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Abstract. This paper reports the complete characterization of addiellular automatadC A)
that employzor andznor logic as the next state function. Compared to linear cellaldomata
(LC'A) [3], which employs onlyror logic in its next state function, adhC' A display much wider
varieties of state transition behavior and enhanced cangpbwer. An analytical framework is
developed to characterize the cyclic vector subspacesateddy anAC' A with reference td.C A.

It identifies the conditions on which the state transitiohd#or of anAC A differs from that of the
correspondind.C A and also provides the theoretical analysis of the naturéfefence.

. Introduction

This work develops the theory of additive cellular autom@td’ A). The theoretical framework pro-
posed, provides the complete characterization of the ©gtéite space generated by dd'A. An AC A
is additive in the sense that it employs affine (also refeteeds additive) transformation rather than
a linear transformation implemented in a typical linear loé&r automata (.C A). The theory of.C' A
provides the foundation of the proposed characterizatibAG A.

AC A which employzor andznor logic to generate its next state function has been spegeafhylar
among researchers. BothC' A and its subseL.C A (which employ onlyzor logic) have been used to
develop a lot of applications i LS and related fields. They have been used to develop pseudoman
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test pattern generators [18, 19], signature analyzersipie state machines8'SM [1], error correcting
codes [5] etc. Moreover, researchers have desighddbased cipher system[15], message authenticators
[9], C A based pattern classifier [11] with the helpAf A. In the process of developing the applications,
there has been several works to characterize the statditvardsehavior of both.C' A and AC A.

The analysis of lineaf’ A, has been extensively investigated by Stone [21] as palteoéxploration
of linear machine. Vector space theoretic analysis of statesition behavior of this class 6fA has been
reported by Das [8] and subsequently by a number of resaarfBes, 11]. The partial characterization
of AC' A, that employs both theor and znor logic in its next state function, has been introduced in
[3, 15]. However, complete characterization of the cyclates space generated by such’d remains
untouched.

In this background, this paper reports a complete vectaresieeoretic analysis ofC' A. We develop
an elegant solution to derive its cycle structure from asialgf the given rules, defining th&C' A. An
AC A can have both the cyclic and non-cyclic state space. Howemée current work, we only consider
the characterization of cyclic state space as the nonecgualispace generated by 46’ A is isomorphic
to that of LC'A [3].

We next provide a brief introduction to additivéA along with some important results on linear
C A that are relevant for the characterization4af’ A in section IIL The vector space theoretic analysis
targeting complete characterization A€’ A, is reported irsection Il

[I. Cellular Automata Characterization

Cellular Automata ' A) consist of a number of interconnected cells arrangedadyain a regular man-
ner. In most general case(&4 cell can exhibits different states and the next state of each cell depends
on the present states of itsneighbors including itself. Such@A is called ans-statek-neighborhood
C A. However, Wolfram [12] worked with several features of &1t A known as 3-neighborhood (left,
right and self)C' A having 2 states for each cell. The state (next stgte) {0,1} of thei'” cell at time
(t+1) is denoted as

¢ = filal1.dbaf)s
whereg! denotes the state of thé cell at timet and f; is the next state function called the rule of the
automata [22]. Sincgis a function of 3 variables, there a2& or 256 possible next state functions. The
structure of a 3-neighborhoad A cell is shown inFig. 1.

Out of total 256C A rules, 14 rules that can be realized 4y /znor logic are called additive rules
[3]. A CA designed with such rules are called additivel (AC A). The AC'A has been of special
interest to researchers, as it can be characterized byxnadgebraic tools. Matrix algebraic tools are
used to represemt C' A that uses different rules in different cells the current work, we concentrate on
characterizing such hybri@ A. A brief overview of this model is next outlined [3].

An n-cell 1-dimensionalC A is characterized by a linear operaldt,, «,, matrix and am-dimensional
inversion vector. T is thecharacteristicmatrix of the cellular automata. TH#& row of T’ corresponds
to the neighborhood relation of the cell, where

T, i 1, if the next state of thé"* cell depends on the present state of ttecell
/L7 - .
J 0, otherwise.
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Figure 1. A 3-neighborhood' A cell

Since theC A is restricted to 3-neighborhood dependeritj, j| can have non-zero values fpr=
(¢ —1),14, (¢ 4+ 1). The inversion vectof' of an AC A is defined as

B { 1, if the next state of the” cell results from inversiorugor)
"1 0, otherwise gor)
If s; represents the state of tligd at thet!” instant of time, then the next state - that is, the state at
the (¢ + 1) time instant, is given by :
Sp1) =T sy + F. Therefore, supp =TF si+ (I +T+ T? + .-+ TP7HF, Q)

wheres ;) is the state oA at (¢ + p)*" instant of time. For am-cell C A, F is then bit inversion
vectorwith its i (0 < i < n — 1) bitas 1, ifznor rule is applied on thé' cell; whereas 0 implies
zor (linear) rules. The operators, ¢) follow the rules defined in binary arithmetic for multipditton
and addition respectively.

Asthe LC' Ais a special case tAC A, where the inversion vectdr is an allOs vector, the next state
function (eq. (1)) for theC' A gets simplified to

Sip1 =T8¢ = Sp4p=T" - 54 (2

The state transition egs. (1) and (2) results in some glab#d sransition behavior of th€ A on the
basis of which we can classify A* into two categories - group and non-groGpi.

[I.1. Group and non-group C'A

A C A that generates only cyclic states during its state tramsitis known agroup C' A, whereas &' A
generating both cyclic and non-cyclic subspaces isthregroupC' A. The state transition diagram of
an AC A can be characterized from i#smatrix and the inversion vectdr. However, the characteristic
matrix (I") can directly determine whether tliA4 is a group or non-group’A -
if det(T) = 1,theCAisaqgroupCA
= 0,theCAisanongroug’’ A

'Henceforth, unless otherwise mentioned, the teith4 andC A are synonymously used.
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are XNOR Rules.)
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(a) T Matrix and Inversion Vector F ° e
Characteristic Polynomial 554 x4y 24+ @+ x + 1
Minimal Polynomial = x4+ x%+ 1

Invariant Polynomials = (x+1).(x +1) 2 (x2+ X+ 1)

(b) Characteristic Polynomial
of Linear Operator T (c)Cycle Structure CS=4(1),2(2),4(3),2(6)

Figure 2. A 5-cell groug’ A and its cycle structure [4(1),2(2),4(3),2(6)]
Note : TheLC A formed from thel” matrix also have the same cycle structure CS = [4(1),2(2),2(6)]

Group CA : For a groupC'A (Fig. 2), eachC A state has a unique predecessor. That is, all the states
lie on a disjoint set of cycles. The state transition behawfoa groupC A is represented by the cycle
structure (CS) =fhx, (k1), ity (k2), - - -pix,, (km )], Wherek; is the cycle length of thé” cyclic component

of C'S andpy, is the number of such componentsg. 2(c)illustrates the cycle structure of the 5-cell
groupC'A. It has 4 cycles of length 1, 2 cycles of length 2, 3 cycles nfite 3 and 2 cycles of length 6.
The complete cycle structure is denoted & = [4(1), 2(2), 4(3), 2(6)].

Problem Definition :- tackled in this paper. In this work, we analytically compilteC'S =[x, (k1), pi, (k2), -
-1k, (km)] from a given additiveC' A - that is from &’ matrix and theF” vector. Computation of''S for a
linear C' A has been widely studied [3, 6, 7, 20]. We consider those etual the base while formulating
our proposed scheme.

The reported analysis show that the cycle structurb@f and AC A follows some definite relation
and can be divided into two distinct categories - (1) Theegttucture repeated and not the sequence of
LCA andAC A are identical Fig. 2); (2) The cycle structure of C' A and AC A are different Fig. 3).
Details of these two aspects are reportedention Ill

Scheme to analyze cycle structure €' A has been developed with the underlying concept of
characteristic polynomial, minimal polynomial and inaari polynomials.

Characteristic polynomial : The characteristic polynomigl(x) of aC A is det{T" + Ix), whereT is the
characteristic matrix.

Minimal polynomial: The minimal polynomial is the minimum degree polynomial efhannihilates".
Invariant polynomials (IP):The characteristic polynomigi(x) comprises of polynomialg;(x)™ in-
variant to the linear operat@r, whereg;(z) is irreducible.

The example”' A of Fig. 2illustratesT’, its characteristic polynomial, minimal polynomial ane th
invariant polynomials.

If the characteristic polynomigf(z) of aC A is expressed as a product of its invariant polynomials
(IP), then

fla) =a™ 2™ a P ()" ()™

whereg; () is irreducible ¢ = 1,2; - -, \'). The number of P comprising the characteristic polynomial
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is denoted byV. Afactorz™ (i =1,2;--,1), ( <N), of f(x) represents a non-cyclic subspace whereas
¢;(x)™ corresponds to a cyclic subspace. For a group there is not a single™ components irf (x).
That is, for a groug”' A, the characteristic polynomial is

f(x) = ¢1(x)™ da(2)" - - - fpr (@)™ ®3)

The characterization of.C A state transition behavior is reported in [2, 3, 4, 6, 13, 19¢me of the
fundamental results reported in [3] and [20] are noted beldvese results are important while building
the analysis scheme for additi¢&A, described irsection IIL

[I.2.  Vector Space Theoretic Analysis ofLC'A
The following theorem, noted from [20], is one of the fundamaé results reported for theC' A.

Theorem 1. The cycle structure of ahC' A can be represented as

OS = [1(1) + 33 i20, (27 - )] @

ki §=0
wherek; is odd.

Example 1. The cycle structure of theC A noted inFig. 2is C'S = [4(1), 2(2), 4(3), 2(6)]. We can also
represent itag’s =[1(1), [3(2), 2(2)], [4(3), 2(6)]]. Heré;s, the odd cycles, are 1 and 3. Corresponding
to each odd cyclek), there is a cycle of lengt® - k;, in this case; = 1 for both the odd cycles 1 and 3.

The above discussion demands definition of the followingnieologies - primary cycles, secondary
cycles and cycle family that are essential for the analyistyde structure of &' A.

Definition 1. Primary and secondary cycles : Each odd cykl® i6 the cycle structure is referred to as
a primary cycle and the cycles which are of the f&¥m k; (j > 1) are referred to as secondary cycles.

Definition 2. k cycle family : All the cycles of the forma’ - k (j > 0), wherek is the length of a primary
cycle, are the member of a family of cycles referred t&-a&ycle family. It is also referred to as primary
cycle family.

The basic scheme for extracting the cycle structure o & from its characteristic matrif’ has
been reported in [20]. Further, a more efficient and comggotithm is presented in [11]. The execution
steps of the algorithm are next illustrated through an examp

Example 2. Let the T matrix of a 5-celLC A is

M o 0 0 0
1 0o o
T = 0 1] 0 0

o O O O
o O
o O
 —_
= O
=
—_
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The following steps are to be executed to find the cycle siraadf the.C' A from itsT" matrix.

Step 1 : Find out the characteristic polynomial thd, illustrating each invariant polynomial separately.
For the exampl€' 4, itis (x + 1)(z + 1)?(2? + 2 + 1).

Step 2 : Find out the cycle structure for each of the invarfaiynomials. For the current example,
these are

CSLCA(JE+1) = [1(1)7 1(1)]7 C1‘S’LC’A(30+1)2 = [1(1)a 1(1), 1(2)]7 CSLCA(JE2+$+1) = [1(1)a 1(3)]

Step 3 : Enumerate the complete cycle structure of(tkeby successively performing cross product
of cycle structures generated by each invariant polynof2i@). Therefore, the exampl€' A has the
following cycle structure

CSpca =[1(1), 1(1)] x [1(1), 1(1), 1(2)] x [1(1),1(3)] = [4(1),2(2),4(3),2(6)].
where x represents the cross product operation and is defined as

Definition 3. Cross Productx) of two cycle structureg’S; andC'Ss, where

mkil

CS1=[1(1) + Y piy,, (k1iy)] and CSy = [1(1) + i Iy, (K1iz)],

i1=1 io=1

is the product of each;* term of C'S; and thei,!" term of C'S,. The product ofukh.1 (k1i,) and
ks, (kai, ) results in the cyclic componepi, of lengthk following the equations [20]

M = ,uklil .,uk% -ng(klil s /{22'2) and k= lcm(/{ul,kgi2) (5)

Based on the results provided in this section, we reporildetalysis of the state transition behavior
of AC A that follows.

[ll.  Vector Space Theoretic Analysis of Additive C'A

Complete characterization of the state transition bemasican AC A is reported in this section. An
AC A, as noted irsection 1| is represented by the characteristic maffiband the non-zero inversion
vector F. The AC A generates more varieties of cycle structure than that edli6’ A (LC' A). Fig. 3
gives a typical example of cycle structure generatedibyd which is not available from anC A. This
section also highlights the variation diC' A cycle structure with that of its linear counterpart.

An ACA - C'"is a groupC A iff its linear counterpartC' (represented by the same characteristic
matrix 7' of C” with all Os ' Veector) is a groupC' A [3]. It signifies that the cycle structure of atC' A
can be figured out from the analysis of state transition kieha¥the corresponding.C A. Moreover, the
concept of null space and its relationship with cycle lergftan LC A is necessary for further analysis
of cycle structure oAC' A. These are reproduced from [10, 17].
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Figure 3. AdditiveC'A and its state transition behavior. The cycle structurg$s = 2(8). The cycle structure of
the correspondingC' A is C'S =[2(1), 1(2), 3(4)]
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Definition 4. Null space : The null space of a matrik)consists of all such vectors that are transformed
to the all-zero vector when premultiplied by the matrix.

Theorem IIl.1. [16] If an LC A represented by’ has a cycle of length, then the cardinality of the null
space of T* + 1) denotes the number of states forming cycles of lerkgtin sub-multiple ofk.

Theorem II.2. [10] If an LC' A is represented by and for any statg # 0, g(7") - x = 0, theng(z) and
the characteristic polynomigl(z) have some common factéfz).

The analysis ofAC' A state transition behavior is done with the solutions ofiwlhg issues :
A. To check whether a particular cycle lendt) is present in the cycle structure of ai' A.

B. To find the special class ofC A (C’) having the cycle structure as that of its linear counterpar
irrespective of its inversion vectdr.

C. To identify the class of” whose cycle structure differs from that 6f, and the properties of’
vectors which impart this difference.

D. To enumerate the cycle structure and deptt'of

The following subsections report the analysis and restilédbove four issues.

lll.1. ldentification of a cycle of length (k) in AC A cycle structure

The following theorem enables us to determine whether aayidengthk exists in anAC A or not.

Theorem 2. [16] In an AC' A with characteristic matrif” and the inversion vecta¥, a cycle of length
k exists if

rank([T* + 1)) = rank([T* + 1, F]), where F = [[ + T +T? +--- + T F

Proof:
Let y be a state in a cycle of lengthin an AC' A C’. Hence, as per eq. (1) section ||

—[I+T+T*+ - +TFYYF+TF.
It can be written as

[TF+1]-x=F, where F=[I+T+T?+-- -+ T F (6)
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If a cycle of lengthk is to exist inC’, eq. (6) should be consistent. The condition for consisténc
rank([T* + I)) = rank([T* + 1, F]) 7)

Hence the proof. O

l11.2. Class of AC' A with the cycle structure identical to corresponding linearC' A

Theorem 3s utilized to explore a special class ©f (AC A) that has cycle structure identical to that of
C (LC A) irrespective of the inversion vectdt. The following theorem defines such a clas€6f

Theorem 3. The cycle structures af’ (AC A) andC (LC A) are identical if the characteristic polyno-
mial f(z) of theT matrix does not have a factor + 1).

Proof:

Let k be the length of a cycle of the line@fA - C' with characteristic matrif’; characteristic polynomial
f(x) of which does not have a factar ¢ 1). To have a cycle of length in the correspondingiC A -
C’, eq. (7) has to be satisfied.

The number of vectors, forming a cycle of lengttor sub-multiple oft, in the ACA/LC A are derived
from the enumeration afull spaceof o, = (T* 4 I) [17].

Let (2% + 1) =g(x) - ¢.(z); ¢.(x) is the largest factor of the characteristic polynomnyiat) that divides
(¥ + 1). Thereforeg(x) and f(x) don't have any common factor. Hence for each stgtevhere
(T* + 1) - x =0, there is a corresponding unique stgtewhere¢.(T) - ¥ = 0 (from theorem 111.3.
Hence, the cardinality of null space @f = ¢.(T") is same as;.

Sincef(x) does not have a factgr + 1) andz* +1=(x +1) - (1 + = + 22 + - - - + 2~ 1), therefore
similarly the cardinality of the null space e = [[ + T + T2 --- T*~1] = a; = ay . Hence,

rank(TF + 1) = rank(T* + LT+ T +T? .. T"1)
that is,
rank(T* 4+ 1) = rank(T* + I, F)

directly follows for anyF'.

Therefore, all the cycle lengths 6falso exist inC’. Since the number of vectors forming each cycle
length is same for the both (directly derived from the caatiiy of null space), the cycle structures for
both theC A are identical. Hence the proof. O

The following example illustrates the resulttbeorem 3

Example 3. Let consider a 5-celdC A with characteristic matri¥” and the inversion vectaF # 0,
where

110 00
101 00
T=]10 0 110
0 0111
00010
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The characteristic polynomial @f is (z® + 2 + 1)(2% + 2 + 1). The cycle structure of the corresponding
LCA s [1(1),1(3),1(7),1(21)]. ThelC A, as pertheorem 3 has the identical cycle structure as that of
the LC' A, irrespective ofF'.

Let us consider a particular cycle of length 7. As per the &g we enumerate; = T7 + I, ap =
T3+T+1andaz =T +T° +T*+ T3+ T2+ T + I, where

01011 11010
1 1010 100 01
T"+I=]10 0 0 0 0 [, T™+T+1=| 00 0 0 0 |,and
00000 00000
00000 00000

1 000 1
1 101 1
TS+ T +TH+T3+T?*+T+I=| 0 0 0 0 0
00000
00000

All the three matrices witl3™¢, 4" & 5 rows as all zeros, have cardinality of null space as 8. There-
fore, rankfy;) = rankz,a3) and ranké;) = ranke, F); F=(I +T +T? + T3 +T* +T5 +T5) - F.

That is, both the”” andC' have cycles of length 7. The number of states having cycigtten or sub-
multiple of 7 (here it is 1) is 8. Therefore, tli2A cyclic components of cycle length 7(§;—1) =1 (as
one state forms a self loop). The complete cycle structur® afin be shown as'S’ = [1(1), 1(3), 1(7),
1(21)], which is same as that of C.

l11.3. Class of AC'A with cycle structure different from that of LC'A

Fromtheorem 3it is obvious that the cycle structure of the lingan - C' and theAC A - C’ can differ
only if the characteristic polynomial of thé A has a factor ofx + 1). The study of the role ofz + 1)
factor helps identification of the class dfC' A for which the cycle structure differs from that of the
correspondingLC'A. Let us concentrate on theC' A/AC A having a single invariant polynomial as
(z 4+ 1)™. The generalization follows subsequently. The followiagninologies are defined relating the
cycle structure of .C A/AC A.

e C(x+1)™: The LC A with characteristic matri’, the characteristic & minimal polynomial as
(z + 1)™ has the cycle structure [3]

CS =[1(1) + ) 19i(2")], wherem = [logs(n)], 8)
=0
rank of (T +1) = n—1, andrank of (T +1)" = n —i. 9)

TheC¢(xz) andC’¢(x) represent thé.C' A and AC A respectively with characteristic polynomial
().
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e [FX]: The set of inversion vectors which annihilates ofity+ 1)* - that is,

(T+DF-x =0, where (T+1)* - x #0and k' < k & x € [F"). (10)

e Car[FX]: Cardinality of the sef'.

Based on the results of titleeorem 2we next identify the condition responsible for the diffeze in
cycle structure of(z + 1)" andC’(z + 1)™.

Theorem 4. The ACA C'(x +1)", characterized by and the inversion vectdr, andLC A C'(z+1)"
have the identical cycle structure if

rank(T + I) = rank((T + 1), F) (11)

Proof:

In order to test whether the cycle structurel@'A C'(x + 1) andACA C’'(xz + 1)" are identical, the
consistency of eq. (6) is checked for the existence of a @fdiengthk in C’. The LC' A C has cycle(s)
of lengthk, where from eq. (8),

k=2, j=1(0,1,2,--- ,m), m = [loga(n)].

Since the cycle lengthk} of C(z 4 1)" is of the form27, the relation for consistency (eq. (6)) can
be rewritten as

T +1) - x=(I+T+T%+---+TY YHF (12)

wherej = (0, 1, 2,- - -, m) andm = [loga(n)]. The relation has to be consistentj to establish the
equivalence of cycle structures 6f& C’. Since

(T + )= T+D% and (I +T+ T2+ +T? 1) = (T +1)? 1,
eqg. (12) can be rewritten as
(T+D? x=T+D*'"F=(T+D¥(T+I) -x=F] (13)
It implies
(T+1) - x=F (14)

is to be consistent. That is, it should satisfy réhk{ 1) = rank((" + I), F)).
Hence the proof. O

Eq. (11) characterizes thE vector responsible for imparting the difference in cyclusiure be-
tweenLC' A and AC A. The following theorem notes the characterizatiorf'ofectors.

Theorem 5. The cycle structure alC' A C’(x + 1)" differs from that of its linear counterpaft(z+1)"
if and only if the inversion vectoF’ of ACA € [F"].
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Proof:
In order to prove the theorem, the consistency of eq. (14)ésked for inversion vector
(1) F € [F™], wheren' < n, and (2)F € [F"].

Comment: The proof establishes the fact that in the first bage C' andC’ have the same cycle
structure while in the second case the cycle structur€’dfiffers from that ofC. The proof is estab-
lished by checking consistency for every cycle lengtlx @/, j = {0,1,2; - - ,m})

Case 1: Inversion vectoF' € [F"'], wheren/ < n. We show thateq. 141(+ 1) - x = F) is
consistent iffy € [F"'*1].
If x e [F™'+1], then

(T+D)" T x=0=(T+D" -[(T+I)-x]=0 (15)

As per the definition of f' 1] (noted in page 1010), the constituent vectors become zsljovehen
premultiplied by(T" + I)+! and higher factors. Therefor&]’ + I) - x # 0 and the vectoy is formed
by enumerating the equation

(T+I)-x=y (16)
Moreover, eq. (15) can be rewritten as
(T+D" y=0 = yel[F"] ie. (T+D" -y#£0 n’"<n (17)

Since rank of T + 1) is (n -1), x; (¢ = 1, 2 andy, x2 € [F'*1]), while premultiplied with {" + I)
generates the samen eq. (16). That s,

(TH+I)-x1=(T+1) - x2=y

. . . . . . Car(F7 1
Hence, exploiting thle all possible palrs)gfwe/ obtain the set af having cardlnallty%
the cardinality of ™ *1] is denoted as Caf(® ).

Since rank of T + 1) *1 is one less than that ¢f" + 1)’ (eq. (9)), therefore

, Where

Car(F"*1) =2 x Car(F™)
ThereforeCar(y) = Car(F™) - that is, the full set of F™') is represented by. It implies, the relation
(T+1)-x=F

is consistent for all values af < [F”/] and consequently, eq. (13) is consistent forialle [F”/],
n' < n.

Case 2 Checking consistency of cycle length #o€' A C’(x + 1)™ with inversion vecto’ € [F™] : In
this case, it is shown that eq. (14) is inconsistent for atleyength2’ < n. Multiplying either side of
eq. (14) with(T + I)™~! we obtain

(T+1)"x=(T+I1)"'F. (18)

It is inconsistent since thie ft hand side (LHS) = 0 while right hand side (RHS) # 0. O



1012 N. Ganguly, B. K. Sikdar, P. P. Chaudhuri/ Theory of Additdedlular Automata

Theorem Beads to the following corollary that specifies the cyclesture ofC’(x + 1)".
Corollary lll.1. The cycle structure of’(x + 1) with F' € F™ is
S = 2M); W =2"M and M =|loga(n)| +1 (19)

where the cycle structure 6f(x + 1) (eq. (8), page 1009) is

CS=[1(1)+> 125(27)] where m = [loga(n)].
j=0

Proof:

Since the characteristic and minimal polynomial®@fis (z + 1)" - that is, (T" + I)™ is always = 0.
Therefore, eq. (14) becomes consistdnli(S = RH S = 0), when we premultiply both sides ¥y + 7).
Consequently, eq. (13) is consistenRif— 1 > n - that is, cycles of length’ exist inC’ if 27 — 1 >
n. The minimum value ofj for which the equation becomes consistent is representettbyhere
M=l < < M,

1. If n = 2[tee2n] thenn is of the form27; wherej is an integer. Therefordjogon] = |logon| =
logan. In that caseM= |logan | +1.

2. If n < 2leg2n] thenM = [logan] = [logan] +1.

Considering (1) and (2), it can be found thet = |logon | +1.
Since all the states fall in the null space(®f-+ I)QM, as pettheorem IlIl.1 the AC'A can have cycles
only of length2™ and the number of cyclic componenjg)is 2" /2M = 2n—M, O

The M is denoted as theminimum additive factorThe following example illustrates the results of
theorem Sandcorollary Il.1.

Example 4. Let us consider the following” matrix and two inversion vectors; and F; of the 4-cell
ACA -

F1= F2=

o O =

1 0
1 1
0 1

_ = O O
— =
— =

o

0 0 1 0

The characteristic polynomial and minimal polynomial of this (z + 1)*.

The cycle structure of theC' A counterpart with characteristic matrixis C'S = [2(1),1(2),3(4)].

The inversion vectof; annihilates(T + I)*. The AC A with characteristic matri” and the inversion
vector F; has the cycle structure [2(8)fig. 3). However,F, cannot annihilat¢T +I)*. The AC A with
characteristic matri{” and the inversion vectar, has its cycle structur€'S’ identical toC'S generated
by the LC A.



N. Ganguly, B. K. Sikdar, P. P. Chaudhuri/ Theory of Additdedlular Automata 1013

Theorem 5& corollary 11l.1 can be extended to a more generalized clasB@f/AC A. As per
theorem 3Jit is noted that the cycle structure dfC' A - C’ can differ fromC only if the characteristic
polynomial ofC'/C’ contains a factor ofz+1). That s, the characteristic polynomial can be represented
as

F@) = @+ 1"+ 1)1 (@) (o)™

where (i) eachp;(z)™ is an invariant polynomial and (ii) the irreducible factdrtbe first/ invariant
polynomials is(z + 1). The following theorem states the nature of cycle structafreuch LC'A and
ACA.

Theorem II.3. The cycle structure of.C' A, with characteristic matri¥’ and a factor(x + 1) in the
characteristic polynomial, is

CS =11+ 33 pors (@ k) ky = 1 (20)

k; j=0

whereas the cycle structure diC' A, with the characteristic matriX’ & inversion vectorF' and having
the larges{x + 1)-invariant polynomial annihilated b¥ as(x + 1)", is

my,
CS'=3 > Mg (2 ki), k=1 (21)

ki j=M

where

(Hos g, X 27 k) + 1

M=

<
Il
o

, ST for k=1
/’LQM.]%

M

<
Il
=)

Moi. g, X 2j - k;

otherwise

ML

and ”/23161 = MQj'ki ] > M, M = I_lOanzJ + 1.

Proof:

The proof is developed with the assumption that(the+ 1)™ is theonly factor annihilated by?. The
generalization can be done whére+ 1)™ is thelargestfactor annihilated by

The characteristic polynomigdl(z) of such aC' A is denoted as

f@)= (@ +1)" x d(a); dlx) = d1(x)™ - dim1(x)™ "+ dig1(2)™ " ()"

The cycle structurce?SqB(a:) corresponding t@B(a:) is same for both thé.C' A and AC'A. Let F' be
the inversion vector which annihilates the factort 1)":.
As per thetheorem 5the cycle structures generated due to the fagtor 1)™ differ in C & ¢’ and
these are’'S’(z + 1) andC'S(x + 1)™ (from corollary 111.1). From the egs. (19) &§), we have

CS/(w+1)% = W (@M), p =2 M & M = [logs(mi)] +1



1014 N. Ganguly, B. K. Sikdar, P. P. Chaudhuri/ Theory of Additdedlular Automata

and CS(z+1)™ =[1(1) + > fip(27)], where m = [loga(n;)].
j=0

The cycle structure (IL‘gB(x) follows from eq. (4) and forms Enear cycle structure
CSo(x B Z i 1 (27 - k)
k; 7=0

Therefore, the cycle structurésS andC'S’ are represented as

CS = CSé(z)x CS(x+1)" +ZZMM 2 k)] x (1) + > fis(27)] (22)
ki 7=0
CS = CSé(z) x CS'(x + 1)™ +ZZNM 27 k)] x [ (2] (23)
k; j=0

The above two cross produgtgroduceC'S andC'S’ specified in the egs. (20) and (21) respectively.
O

The results ofheorem lll.3are illustrated below.

Example 5. Let us consider th& matrix of the 5-cellC A of Fig. 2 as shown below

1 00 0O
01 1 00
T=]1001 00
00001
000 11
Consider the thred C A with the characteristic matrix a8 having these inversion vectors
0 1 0
1 1 1
= 11, F= 1|, andFz= 0
0 0 1
0 0 1

e The characteristic polynomigl(z) of the exampleLC' A/AC A, in invariant polynomial form, is
fl@)=(x+1)(z+ 1)@ + 2 +1).

e The inversion vectof;= [01100] annihilates onlyz + 1)2. Therefore M = [logz(2)] + 1= 2
(corollary 111.1). For this case,

2note the appendix for details
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— f(x) can be expressed a$r) x (z + 1)2, wherep(z) = (1 4+ z) - (22 + x + 1).

— The cycle structur€Sé(z) = CS(1 4 x) x CS(x? +z + 1) = [1(1),1(1)] x [1(1), 1(3)]
= [2(1),2(3)].

— The cycle structur€'S(1 + z)2 = [1(1), 1(1), 1(2)], whereaC' S’ (1 + z)? = [1(4)].

— The resultant cycle structur@S = C'S¢(z) x CS(1+z)2 =[[4(1),2(2)], [4(3),2(6)]] while
CS'=CS¢(zx) x CS' (14 z)? =[2(4),2(12)].

e Similarly, F, = [11100] annihilates both the invariant polynomidlg + 1) and(x + 1)2. This is,
the case wherér + 1)? is thelargest factor annihilated by. ThereforeC'S’ = C'S'(x + 1) x
CS' (z+1)2 x CS(x?+z+1) =[1(4)] x [1(2)] x [1(1),1(3)] =[2(4),2(12)]. Itis same as that
of the cycle structure generated By.

e The changes in cycle structure of each cycle farjlyjn C'S andC'S’ respectively are as per eq.
(21) of theorem I11.3 For example, 2(4) wherg, = 1 and2™ = 4, the corresponding cycle
structure inC' which have got merged i is [4(1),2(2)]. The cyclic component ¢f,2.; has
been formed as per eq. 21. Herg ; = 41 +2x2 =2

e ConsiderFs = [01000]. It doesn't annihilate eithdr: + 1) or (z + 1)2. Therefore, the cycle
structure ofC' andC’ are the same - [4(1), 2(2), 4(3), 2(6)].

Theorem lll.3and the earlier example identify the nature of cycle stmecf AC A. The complete
algorithm to compute cycle structure of ' A is described next.

l1l.4. Enumerating cycle structure of an AC A

The scheme to enumerate cycle structure ofddhA is developed based on the theory reported in the
earlier subsectiond’heorem 3eports that the cycle structures 4€' A and the correspondingC A are
identical if the characteristic polynomial of the lineareogtor?” doesn’t contain the factgtz + 1). On

the other hand, if the characteristic polynomial is having factor(z + 1), then the cycle structure of
the AC A is to be computed from eq. (21). However, it requires evadaaif M - the minimum additive
factor.

Definition 5. The least cycle length of any primary cycle) (n C'S’ (cycle structure ofAC' A) is given
by 2M . k; whereM is denoted as minimum additive factor.

The value ofM can be deduced frotheorem 2 The rank of T + I] and[T* + I, F] is successively
compared for alk = 2™ - k1, m > 0, until the ranks become equal. The valuekadt which both the
ranks become equal provides the value\df The algorithm to deduca is next elaborated.

Algorithm 1. Enum_M(T, F)
Input : 7" matrix, £’ Vector
Output : M

M=-1

I, F]

do{
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M=M+1

EvaluateF = [I + T + T2 + ... + T*"~1|F

Evaluate R1 = rar{[TQMfl +1]and R2 = ran[<T2M*1 +1,F]
Jwhile (R1 < R2)

return M

Once theM is enumerated, the cycle structure €' A - C’ for eachk;-cycle family constituting
CS’ is evaluated from thé'S of LC' A - C (theorem I11.3.

Algorithm 2. EnumCS _of ACA(T, F,CS5’)

Input : Characteristic matri¥’ and inversion vectof’
Output : The cycle structure ofC A - C’
Enumerate cycle structureéS of LC A, where

mkl
CS=1[1(1) + Z Z foik, (27 - k)]s ki is odd and [CL] is the set of odd cycles of length k;.
ke =0

If characteristic polynomial o’ doesn't have a factor dfr + 1), then
Output the cycle structur€'S of C asC'S’ of C’.
else
M =Enum M(T, F)
for eachk; € [CL]
{

Evaluatey),, , for eachk; following eq. (21)
ngj.ki = figi.i, fOrv j > M

My,

Output CS= Z Z foig, (27 ki), ki=1
ki =M

The next example illustrates the execution steps of therithge. The AC A is represented by it§
matrix andF' vector; thel’ matrix of this example is the one used in tyxample 2

Example 6. Let the T matrix of a 5-celdAC A be

1 o 0 0 0 1
0 1 1] 0 o0 1
T=|( 0 [0 1] 0 0 andF=1 0
0 0 0 [0 1] 1
0 0 0 [1 1] 1

The matrix[T* + I, F] is referred to aaugmented matrix

Step 1 & 2 : Finding characteristic polynomial and cycle atiuge -

Characteristic polynomiaf (z) = (z + 1)3 - (22 + 2 + 1)

The cycle structure of theC' A having the characteristic polynomiélz) is [4(1), 2(2), 4(3), 2(6)].
Step 3 : Finding the values @#1.
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e Rank of(T! + I) is 3, while the rank of the augmented matrix is 4. Hence, cytlength 1 does
not exist.

e Rank of (T2 + I) is 2, while the rank of the augmented matrix is 3. Hence, cgtlength 2 also
does not exist in thelC' A.

e Rank of(T* + I) is 2, while the rank of the augmented matrix is 2. So, the vafu#1 is 2.

Step 4 : Finding the components
1. k, _1M22 — 4><1+2><2+0><4 2.

2. ]{Z 3“ — 4><3Jr%2 %3+0><12 =2

Hence, the cycle structure becomes [2(4), 2(12)] .

IV. Conclusion

This paper presents the complete scheme to compute the styetture of additive cellular automata
(ACA). The similarities between the cycle structure of/afi A and the cycle structure produced by
the AC' A is explored. An analytical scheme has been devised to ¢xtrasimilarities for enumeration
of the cycle structure olC' A. The scheme can be used further to efficiently utilifa@ A for different
purposes in the future.

Appendix

Elaboration of the steps to obtain the cross product of eq. @

The cycle structure(S) of an LC' A is evaluated from the expression referred in eq. (22). The
expressions fo€'S noted in eq. (22) is reproduced below along with the final ltesated in eq. (20).
The intermediate computation steps are not shown as it caliréetly obtained through simple cross
product [20].

CS = CSé(x) x CS(z + 1) )+ ZZ/@ k(27 )] 5 (L) 4> figs (27)]
ki 7=0

= DO+ mein @ k) k=1

ki j=0

The cycle structure({S’) of AC A is evaluated through eq. (23) reproduced below.

CS' = CSé(zx) x CS'(x+ 1)™ +ZZum (27 k)] x [/ (2]
k; =0

The cross product of eq. (23) produces eq. (21) (page 1018)caA be seen from eq. (21), the
cyclic components ofS’, 1/y;.;, has some relationship with,; ,, - the cyclic components of'S.
This section establishes the relationship defined in eq. (Rtie relationship betweem,; ., andy/'s; .,
comprises of two parts - (a) wheje> M and (b) whergf < M
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Let us consider a particular cycle famity. We (1) first show that the number of states encompassed
by a the family is same for botf'S andC'S’". (2) Then we showiy; i, = 195 1, for j > M and finally
(3) establish the relation betwegfy .y, andyg; i, for j < M.
1. Computing the number of states in a family

From eq. (5), product ofi, (k1iy) and i, (kai,) results in the cyclic component, of lengthk,
wherepy, = [y, -Fkas, .gcd (ki , k2iy) andk = lem(kyy, , kai, ). Therefore, the number of states involved
in forming the cycle is given by

poX k= (ks Hos, -9€d(kiy s k2iy)) X (Lem(kiy s ki) = [k, -Hos, -R1iy ki (24)

The above result can be applied to compute the number o§sthigeparticular familyk; in C'S and
CS’. Let refer cycle structure of; family asC'S(k;) andCS’(k;) for LC'A and AC A respectively.
The number of states covered are considerefl(as) and S’(k;) respectively inC'S(k;) andCS’(k;).
Therefore,

Z/@ k(20 ki) +ZM21 (2)] = S(ki) = (g, x 27 ks x [Lx 14> (fizs x 27)])
j=0 j=0 =0
Similarly,
CS'(k ZMJ k(2 R X W (2] = S (k)] =Y (s, X 27+ x ' x 2M)
j=0
From the egs. (19) &8), we have
pox M =14 figs (27) (25)
=0
Therefore,S(k;) = S'(k;) — Result (1).
2. Thepg; g, = 1o 5, for j > M.
CS = CSé(x)x CS(x+1)" +ZZ,¢M (27 k)] X [L(1) + Y s (27)]
k; j=0 j=0
= )+ D s () + 3O froik (27 k) x [L1) + Y fias (27)])]
Jj=0 ki =0 J=0

(i) Considering2’ = 27 - k;, wherek; = 1 & sincem < M (egs. (19) & ( 8))

¢S = +Z Z/‘M 20 - ki) Z fiie, X [1(1) + Y figs (2)](27 - ki)

J=M+1 3=0
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CS(x) x OS'(x +1)™ = [1(1) + Ziﬂzmk,;(?j k)] x [/ (2]

k; =0

@) + SIS s (27 ki) (2
ki =0

M Mk,
W/ @)+ IO Ao, (27 ki) x ! @M) + (Y g (27 - ki) x 1/ (2M))]
ki §=0 j=M+1

(i) Considering2™ = 2M . k;, wherek; = 1.

Forj > M

CS'" = IO (o, @M k) + D w X 2M X i, (2 - K]
ki =0 j=MA41
m .
Mok, = Haig X [1+ Zﬁm(?])]
=0
Woig, = 1 x2Mx fig,,

Therefore jig;.y, = iy, for j > M (eq. (25)) — Result (2).
3. Computation of'gr1 .y,

1019

Combining the results (1) and (2), the number of states eoMey the cycles of lengtk 2M - k; are
same for both.C' A and AC A.
The states covered YC A arep’ym ., x oM k.

M

Similarly, the states covered by &’ A for anyk; # 1 arez Hhoi ;X 2k

Therefore,

J=0

M .
D oig X 20 ks
j=0 ,

,U'IZM-k’i = oM L. ki # 1

M

However, the states covered by thé'A for k; =1 areZ(uy_ki x 27 . k;) +1 and, therefore,

J=0

M
L+ g x 20k
'u/ Mo = j=0 .
2MLk; 2M . kz )

ki=1
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