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Abstract. This paper reports the complete characterization of additive cellular automata (ACA)
that employxor andxnor logic as the next state function. Compared to linear cellular automata
(LCA) [3], which employs onlyxor logic in its next state function, anACA display much wider
varieties of state transition behavior and enhanced computing power. An analytical framework is
developed to characterize the cyclic vector subspaces generated by anACA with reference toLCA.
It identifies the conditions on which the state transition behavior of anACA differs from that of the
correspondingLCA and also provides the theoretical analysis of the nature of difference.

I. Introduction

This work develops the theory of additive cellular automata(ACA). The theoretical framework pro-
posed, provides the complete characterization of the cyclic state space generated by anACA. AnACA
is additive in the sense that it employs affine (also referredto as additive) transformation rather than
a linear transformation implemented in a typical linear cellular automata (LCA). The theory ofLCA
provides the foundation of the proposed characterization of ACA.

ACA which employxor andxnor logic to generate its next state function has been speciallypopular
among researchers. BothACA and its subsetLCA (which employ onlyxor logic) have been used to
develop a lot of applications inV LSI and related fields. They have been used to develop pseudo-random
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test pattern generators [18, 19], signature analyzers [6],finite state machinesFSM [1], error correcting
codes [5] etc. Moreover, researchers have designedCA based cipher system[15], message authenticators
[9], CA based pattern classifier [11] with the help ofACA. In the process of developing the applications,
there has been several works to characterize the state transition behavior of bothLCA andACA.

The analysis of linearCA, has been extensively investigated by Stone [21] as part of the exploration
of linear machine. Vector space theoretic analysis of statetransition behavior of this class ofCA has been
reported by Das [8] and subsequently by a number of researchers [3, 6, 11]. The partial characterization
of ACA, that employs both thexor andxnor logic in its next state function, has been introduced in
[3, 15]. However, complete characterization of the cyclic state space generated by such aCA remains
untouched.

In this background, this paper reports a complete vector space theoretic analysis ofACA. We develop
an elegant solution to derive its cycle structure from analysis of the given rules, defining theACA. An
ACA can have both the cyclic and non-cyclic state space. However, in the current work, we only consider
the characterization of cyclic state space as the non-cyclic subspace generated by anACA is isomorphic
to that ofLCA [3].

We next provide a brief introduction to additiveCA along with some important results on linear
CA that are relevant for the characterization ofACA in section III. The vector space theoretic analysis
targeting complete characterization ofACA, is reported insection III.

II. Cellular Automata Characterization

Cellular Automata (CA) consist of a number of interconnected cells arranged spatially in a regular man-
ner. In most general case, aCA cell can exhibits different states and the next state of each cell depends
on the present states of itsk neighbors including itself. Such aCA is called ans-statek-neighborhood
CA. However, Wolfram [12] worked with several features of finite CA known as 3-neighborhood (left,
right and self)CA having 2 states for each cell. The state (next state)q ∈ {0,1} of the ith cell at time
(t + 1) is denoted as

qt+1
i = fi(q

t
i−1, q

t
i , q

t
i+1),

whereqt
i denotes the state of theith cell at timet andfi is the next state function called the rule of the

automata [22]. Sincef is a function of 3 variables, there are223

or 256 possible next state functions. The
structure of a 3-neighborhoodCA cell is shown inFig. 1.

Out of total 256CA rules, 14 rules that can be realized byxor/xnor logic are called additive rules
[3]. A CA designed with such rules are called additiveCA (ACA). TheACA has been of special
interest to researchers, as it can be characterized by matrix algebraic tools. Matrix algebraic tools are
used to representACA that uses different rules in different cells. In the current work, we concentrate on
characterizing such hybridCA. A brief overview of this model is next outlined [3].

An n-cell 1-dimensionalACA is characterized by a linear operator[T ]n×n matrix and ann-dimensional
inversion vectorF . T is thecharacteristicmatrix of the cellular automata. Theith row of T corresponds
to the neighborhood relation of theith cell, where

T [i, j] =

{

1, if the next state of theith cell depends on the present state of thejth cell

0, otherwise.
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Figure 1. A 3-neighborhoodCA cell

Since theCA is restricted to 3-neighborhood dependency,T [i, j] can have non-zero values forj =
(i − 1), i, (i + 1). The inversion vectorF of anACA is defined as

Fi =

{

1, if the next state of theith cell results from inversion (xnor)

0, otherwise (xor)

If st represents the state of theCA at thetth instant of time, then the next state - that is, the state at
the(t + 1)th time instant, is given by :

s(t+1) = T · st + F. Therefore, s(t+p) = T p · st + (I + T + T 2 + · · · + T p−1)F, (1)

wheres(t+p) is the state ofCA at (t + p)th instant of time. For ann-cell CA, F is then bit inversion
vectorwith its ith (0 ≤ i ≤ n − 1) bit as 1, ifxnor rule is applied on theith cell; whereas 0 implies
xor (linear) rules. The operators (., +) follow the rules defined in binary arithmetic for multiplication
and addition respectively.

As theLCA is a special case ofACA, where the inversion vectorF is an all0s vector, the next state
function (eq. (1)) for theLCA gets simplified to

st+1 = T · st ⇒ st+p = T p · st (2)

The state transition eqs. (1) and (2) results in some global state transition behavior of theCA on the
basis of which we can classifyCA1 into two categories - group and non-groupCA.

II.1. Group and non-group CA

A CA that generates only cyclic states during its state transitions is known asgroupCA, whereas aCA
generating both cyclic and non-cyclic subspaces is thenon-groupCA. The state transition diagram of
anACA can be characterized from itsT matrix and the inversion vectorF . However, the characteristic
matrix (T ) can directly determine whether theCA is a group or non-groupCA -

if det(T ) = 1, theCA is a groupCA

= 0, theCA is a non groupCA

1Henceforth, unless otherwise mentioned, the termACA andCA are synonymously used.
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Figure 2. A 5-cell groupCA and its cycle structure [4(1),2(2),4(3),2(6)]
Note : TheLCA formed from theT matrix also have the same cycle structure CS = [4(1),2(2),4(3),2(6)]

Group CA : For a groupCA (Fig. 2), eachCA state has a unique predecessor. That is, all the states
lie on a disjoint set of cycles. The state transition behavior of a groupCA is represented by the cycle
structure (CS) = [µk1

(k1), µk2
(k2), · · ·µkm

(km)], whereki is the cycle length of theith cyclic component
of CS andµki

is the number of such components.Fig. 2(c) illustrates the cycle structure of the 5-cell
groupCA. It has 4 cycles of length 1, 2 cycles of length 2, 3 cycles of length 3 and 2 cycles of length 6.
The complete cycle structure is denoted asCS = [4(1), 2(2), 4(3), 2(6)].
Problem Definition :- tackled in this paper. In this work, we analytically computetheCS = [µk1

(k1), µk2
(k2), ··

·µkm
(km)] from a given additiveCA - that is from aT matrix and theF vector. Computation ofCS for a

linearCA has been widely studied [3, 6, 7, 20]. We consider those studies as the base while formulating
our proposed scheme.

The reported analysis show that the cycle structure ofLCA andACA follows some definite relation
and can be divided into two distinct categories - (1) The cycle structure repeated and not the sequence of
LCA andACA are identical (Fig. 2); (2) The cycle structure ofLCA andACA are different (Fig. 3).
Details of these two aspects are reported insection III.

Scheme to analyze cycle structure forLCA has been developed with the underlying concept of
characteristic polynomial, minimal polynomial and invariant polynomials.
Characteristic polynomial :The characteristic polynomialf(x) of aCA is det(T + Ix), whereT is the
characteristic matrix.
Minimal polynomial: The minimal polynomial is the minimum degree polynomial which annihilatesT .
Invariant polynomials (IP):The characteristic polynomialf(x) comprises of polynomialsφi(x)ni in-
variant to the linear operatorT , whereφi(x) is irreducible.

The exampleCA of Fig. 2 illustratesT , its characteristic polynomial, minimal polynomial and the
invariant polynomials.

If the characteristic polynomialf(x) of a CA is expressed as a product of its invariant polynomials
(IP ), then

f(x) = xn1 · xn2 · ·xnlφl+1(x)nl+1 · ·φN (x)nN

whereφi(x) is irreducible (i = 1,2,· · ·,N ). The number ofIP comprising the characteristic polynomial
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is denoted byN . A factorxni (i = 1,2,· · ·, l), (l ≤ N ), of f(x) represents a non-cyclic subspace whereas
φi(x)ni corresponds to a cyclic subspace. For a groupCA, there is not a singlexni components inf(x).
That is, for a groupCA, the characteristic polynomial is

f(x) = φ1(x)n1φ2(x)n2 · · · φN (x)nN (3)

The characterization ofLCA state transition behavior is reported in [2, 3, 4, 6, 13, 14].Some of the
fundamental results reported in [3] and [20] are noted below. These results are important while building
the analysis scheme for additiveCA, described insection III.

II.2. Vector Space Theoretic Analysis ofLCA

The following theorem, noted from [20], is one of the fundamental results reported for theLCA.

Theorem 1. The cycle structure of anLCA can be represented as

CS = [1(1) +
∑

ki

mki
∑

j=0

µ2j ·ki
(2j · ki)] (4)

whereki is odd.

Example 1. The cycle structure of theLCA noted inFig. 2 is CS = [4(1), 2(2), 4(3), 2(6)]. We can also
represent it asCS = [1(1), [3(1), 2(2)], [4(3), 2(6)]]. Herekis, the odd cycles, are 1 and 3. Corresponding
to each odd cycle (ki), there is a cycle of length2j · ki, in this case,j = 1 for both the odd cycles 1 and 3.

The above discussion demands definition of the following terminologies - primary cycles, secondary
cycles and cycle family that are essential for the analysis of cycle structure of aCA.

Definition 1. Primary and secondary cycles : Each odd cycle (ki) in the cycle structure is referred to as
a primary cycle and the cycles which are of the form2j · ki (j ≥ 1) are referred to as secondary cycles.

Definition 2. k cycle family : All the cycles of the form2j ·k (j ≥ 0), wherek is the length of a primary
cycle, are the member of a family of cycles referred to ask-cycle family. It is also referred to as primary
cycle family.

The basic scheme for extracting the cycle structure of anLCA from its characteristic matrixT has
been reported in [20]. Further, a more efficient and compact algorithm is presented in [11]. The execution
steps of the algorithm are next illustrated through an example.

Example 2. Let the T matrix of a 5-cellLCA is

T =

















[1] 0 0 0 0

0 ⌈1 1⌉ 0 0

0 ⌊0 1⌋ 0 0

0 0 0 ⌈0 1⌉

0 0 0 ⌊1 1⌋
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The following steps are to be executed to find the cycle structure of theLCA from itsT matrix.
Step 1 : Find out the characteristic polynomial theCA, illustrating each invariant polynomial separately.
For the exampleCA, it is (x + 1)(x + 1)2(x2 + x + 1).
Step 2 : Find out the cycle structure for each of the invariantpolynomials. For the current example,

these are

CSLCA(x+1) = [1(1), 1(1)], CSLCA(x+1)2 = [1(1), 1(1), 1(2)], CSLCA(x2+x+1) = [1(1), 1(3)]

Step 3 : Enumerate the complete cycle structure of theCA by successively performing cross product
of cycle structures generated by each invariant polynomial[20]. Therefore, the exampleCA has the
following cycle structure

CSLCA = [1(1), 1(1)] × [1(1), 1(1), 1(2)]× [1(1), 1(3)] = [4(1), 2(2), 4(3), 2(6)].

where× represents the cross product operation and is defined as

Definition 3. Cross Product (×) of two cycle structuresCS1 andCS2, where

CS1 = [1(1) +

mki1
∑

i1=1

µk1i1
(k1i1)] and CS2 = [1(1) +

mki2
∑

i2=1

µk1i2
(k1i2)],

is the product of eachi1th term of CS1 and thei2
th term of CS2. The product ofµk1i1

(k1i1) and
µk2i2

(k2i2) results in the cyclic componentµk of lengthk following the equations [20]

µk = µk1i1
.µk2i2

.gcd(k1i1 , k2i2) and k = lcm(k1i1 , k2i2) (5)

Based on the results provided in this section, we report detail analysis of the state transition behavior
of ACA that follows.

III. Vector Space Theoretic Analysis of Additive CA

Complete characterization of the state transition behavior of an ACA is reported in this section. An
ACA, as noted insection II, is represented by the characteristic matrixT and the non-zero inversion
vectorF . TheACA generates more varieties of cycle structure than that of linearCA (LCA). Fig. 3
gives a typical example of cycle structure generated byACA which is not available from anLCA. This
section also highlights the variation ofACA cycle structure with that of its linear counterpart.

An ACA - C ′ is a groupCA iff its linear counterpartC (represented by the same characteristic
matrix T of C ′ with all 0sF Vector) is a groupCA [3]. It signifies that the cycle structure of anACA
can be figured out from the analysis of state transition behavior of the correspondingLCA. Moreover, the
concept of null space and its relationship with cycle lengthof anLCA is necessary for further analysis
of cycle structure ofACA. These are reproduced from [10, 17].
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Figure 3. AdditiveCA and its state transition behavior. The cycle structure isCS′ = 2(8). The cycle structure of
the correspondingLCA is CS = [2(1), 1(2), 3(4)]

Definition 4. Null space : The null space of a matrix (T ) consists of all such vectors that are transformed
to the all-zero vector when premultiplied by the matrix.

Theorem III.1. [16] If an LCA represented byT has a cycle of lengthk, then the cardinality of the null
space of (T k + I) denotes the number of states forming cycles of lengthk or sub-multiple ofk.

Theorem III.2. [10] If an LCA is represented byT and for any stateχ 6= 0, g(T ) ·χ = 0, theng(x) and
the characteristic polynomialf(x) have some common factorh(x).

The analysis ofACA state transition behavior is done with the solutions of following issues :

A. To check whether a particular cycle length(k) is present in the cycle structure of anACA.

B. To find the special class ofACA (C ′) having the cycle structure as that of its linear counterpart C
irrespective of its inversion vectorF .

C. To identify the class ofC ′ whose cycle structure differs from that ofC, and the properties ofF
vectors which impart this difference.

D. To enumerate the cycle structure and depth ofC ′.

The following subsections report the analysis and results of above four issues.

III.1. Identification of a cycle of length (k) in ACA cycle structure

The following theorem enables us to determine whether a cycle of lengthk exists in anACA or not.

Theorem 2. [16] In anACA with characteristic matrixT and the inversion vectorF , a cycle of length
k exists if

rank([T k + I]) = rank([T k + I,F ]), where F = [I + T + T 2 + · · · + T k−1]F

Proof:
Let χ be a state in a cycle of lengthk in anACA C ′. Hence, as per eq. (1) insection II,

χ = [I + T + T 2 + · · · + T k−1]F + T k · χ

It can be written as

[T k + I] · χ = F , where F = [I + T + T 2 + · · · + T k−1]F (6)
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If a cycle of lengthk is to exist inC ′, eq. (6) should be consistent. The condition for consistency is

rank([T k + I]) = rank([T k + I,F ]) (7)

Hence the proof. ⊓⊔

III.2. Class of ACA with the cycle structure identical to corresponding linearCA

Theorem 2is utilized to explore a special class ofC ′ (ACA) that has cycle structure identical to that of
C (LCA) irrespective of the inversion vectorF . The following theorem defines such a class ofC ′.

Theorem 3. The cycle structures ofC ′ (ACA) andC (LCA) are identical if the characteristic polyno-
mial f(x) of theT matrix does not have a factor(x + 1).

Proof:
Let k be the length of a cycle of the linearCA - C with characteristic matrixT ; characteristic polynomial
f(x) of which does not have a factor (x + 1). To have a cycle of lengthk in the correspondingACA -
C ′, eq. (7) has to be satisfied.
The number of vectors, forming a cycle of lengthk or sub-multiple ofk, in theACA/LCA are derived
from the enumeration ofnull spaceof α1 = (T k + I) [17].
Let (xk + 1) = g(x) · φc(x); φc(x) is the largest factor of the characteristic polynomialf(x) that divides
(xk + 1). Thereforeg(x) and f(x) don’t have any common factor. Hence for each stateχ, where
(T k + I) · χ = 0, there is a corresponding unique stateχ̃, whereφc(T ) · χ̃ = 0 (from theorem III.2).
Hence, the cardinality of null space ofα2 = φc(T ) is same asα1.
Sincef(x) does not have a factor(x + 1) andxk + 1 = (x + 1) · (1 + x + x2 + · · · + xk−1), therefore
similarly the cardinality of the null space ofα3 = [I + T + T 2 · · · T k−1] = α1 = α2 . Hence,

rank(T k + I) = rank(T k + I, I + T + T 2 · · · T k−1)

that is,

rank(T k + I) = rank(T k + I,F)

directly follows for anyF .
Therefore, all the cycle lengths ofC also exist inC ′. Since the number of vectors forming each cycle

length is same for the both (directly derived from the cardinality of null space), the cycle structures for
both theCA are identical. Hence the proof. ⊓⊔

The following example illustrates the result oftheorem 3.

Example 3. Let consider a 5-cellACA with characteristic matrixT and the inversion vectorF 6= 0,
where

T =

















1 1 0 0 0

1 0 1 0 0

0 0 1 1 0

0 0 1 1 1

0 0 0 1 0
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The characteristic polynomial ofT is (x3 +x+1)(x2 +x+1). The cycle structure of the corresponding
LCA is [1(1),1(3),1(7),1(21)]. TheACA, as pertheorem 3, has the identical cycle structure as that of
theLCA, irrespective ofF .
Let us consider a particular cycle of length 7. As per the theorem, we enumerateα1 = T 7 + I, α2 =
T 3 + T + 1 andα3 = T 6 + T 5 + T 4 + T 3 + T 2 + T + I, where

T 7 + I =

















0 1 0 1 1

1 1 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

















, T 3 + T + 1 =

















1 1 0 1 0

1 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

















, and

T 6 + T 5 + T 4 + T 3 + T 2 + T + I =

















1 0 0 0 1

1 1 0 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

















All the three matrices with3rd, 4th & 5th rows as all zeros, have cardinality of null space as 8. There-
fore, rank(α1) = rank(α2,α3) and rank(α1) = rank(α2,F); F=(I + T + T 2 + T 3 + T 4 + T 5 + T 6) · F .
That is, both theC ′ andC have cycles of length 7. The number of states having cycle length 7 or sub-
multiple of 7 (here it is 1) is 8. Therefore, theCA cyclic components of cycle length 7 =(8−1)

7 =1 (as
one state forms a self loop). The complete cycle structure ofC

′

can be shown asCS′ = [1(1), 1(3), 1(7),
1(21)], which is same as that of C.

III.3. Class of ACA with cycle structure different from that of LCA

From theorem 3, it is obvious that the cycle structure of the linearCA - C and theACA - C ′ can differ
only if the characteristic polynomial of theCA has a factor of(x + 1). The study of the role of(x + 1)
factor helps identification of the class ofACA for which the cycle structure differs from that of the
correspondingLCA. Let us concentrate on theLCA/ACA having a single invariant polynomial as
(x + 1)n. The generalization follows subsequently. The following terminologies are defined relating the
cycle structure ofLCA/ACA.

• C(x + 1)n : TheLCA with characteristic matrixT , the characteristic & minimal polynomial as
(x + 1)n has the cycle structure [3]

CS = [1(1) +

m
∑

j=0

µ2j(2j)], where m = ⌈log2(n)⌉, (8)

rank of (T + I) = n − 1, and rank of (T + I)i = n − i. (9)

TheCφ(x) andC ′φ(x) represent theLCA andACA respectively with characteristic polynomial
φ(x).
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• [Fk] : The set of inversion vectors which annihilates only(x + 1)k - that is,

(T + I)k · χ = 0, where (T + I)k
′

· χ 6= 0 and k′ < k & χ ∈ [F k]. (10)

• Car[Fk] : Cardinality of the setF k.

Based on the results of thetheorem 2, we next identify the condition responsible for the difference in
cycle structure ofC(x + 1)n andC ′(x + 1)n.

Theorem 4. TheACA C ′(x+1)n, characterized byT and the inversion vectorF , andLCA C(x+1)n

have the identical cycle structure if

rank(T + I) = rank((T + I), F ) (11)

Proof:
In order to test whether the cycle structure ofLCA C(x + 1)n andACA C ′(x + 1)n are identical, the
consistency of eq. (6) is checked for the existence of a cycleof lengthk in C ′. TheLCA C has cycle(s)
of lengthk, where from eq. (8),

k = 2j , j = (0, 1, 2, · · · ,m), m = ⌈log2(n)⌉.

Since the cycle length (k) of C(x + 1)n is of the form2j , the relation for consistency (eq. (6)) can
be rewritten as

(T 2j

+ I) · χ = (I + T + T 2 + · · · + T 2j−1)F (12)

wherej = (0, 1, 2,· · ·, m) andm = ⌈log2(n)⌉. The relation has to be consistent∀ j to establish the
equivalence of cycle structures ofC & C ′. Since

(T 2j

+ I) = (T + I)2
j

and (I + T + T 2 + · · · + T 2j−1) = (T + I)2
j−1,

eq. (12) can be rewritten as

(T + I)2
j

· χ = (T + I)2
j−1F ⇒ (T + I)2

j−1[(T + I) · χ = F ] (13)

It implies

(T + I) · χ = F (14)

is to be consistent. That is, it should satisfy rank(T + I) = rank((T + I), F ).
Hence the proof. ⊓⊔

Eq. (11) characterizes theF vector responsible for imparting the difference in cycle structure be-
tweenLCA andACA. The following theorem notes the characterization ofF vectors.

Theorem 5. The cycle structure ofACA C ′(x + 1)n differs from that of its linear counterpartC(x+1)n

if and only if the inversion vectorF of ACA ∈ [Fn].
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Proof:
In order to prove the theorem, the consistency of eq. (14) is checked for inversion vector
(1) F ∈ [Fn′

], wheren′ < n, and (2)F ∈ [Fn].
Comment: The proof establishes the fact that in the first caseboth C andC ′ have the same cycle

structure while in the second case the cycle structure ofC ′ differs from that ofC. The proof is estab-
lished by checking consistency for every cycle length (k = 2j , j = {0,1,2,· · · ,m})

Case 1: Inversion vectorF ∈ [Fn′

], wheren′ < n. We show that eq. 14 ((T + I) · χ = F ) is
consistent iffχ ∈ [Fn′+1].
If χ ∈ [Fn′+1], then

(T + I)n
′+1 · χ = 0 ⇒ (T + I)n

′

· [(T + I) · χ] = 0 (15)

As per the definition of [Fn′+1] (noted in page 1010), the constituent vectors become zero only when
premultiplied by(T + I)n

′+1 and higher factors. Therefore,(T + I) · χ 6= 0 and the vectory is formed
by enumerating the equation

(T + I) · χ = y (16)

Moreover, eq. (15) can be rewritten as

(T + I)n
′

· y = 0 ⇒ y ∈ [Fn′

] i.e. (T + I)n
′′

· y 6= 0 n′′ < n (17)

Since rank of (T + I) is (n -1), χi ( i = 1, 2 andχ1, χ2 ∈ [Fn′+1]), while premultiplied with (T + I)
generates the samey in eq. (16). That is,

(T + I) · χ1 = (T + I) · χ2 = y

Hence, exploiting the all possible pairs ofχ, we obtain the set ofy having cardinalityCar(F n′+1)
2 , where

the cardinality of [Fn′+1] is denoted as Car(Fn′+1).
Since rank of(T + I)n

′+1 is one less than that of(T + I)n
′

(eq. (9)), therefore

Car(Fn′+1) = 2 × Car(Fn′

)

Therefore,Car(y) = Car(Fn′

) - that is, the full set of (Fn′

) is represented byy. It implies, the relation

(T + I) · χ = F

is consistent for all values ofF ∈ [Fn′

] and consequently, eq. (13) is consistent for allF ∈ [Fn′

],
n′ < n.
Case 2: Checking consistency of cycle length forACA C ′(x + 1)n with inversion vectorF ∈ [Fn] : In
this case, it is shown that eq. (14) is inconsistent for all cycle length2j ≤ n. Multiplying either side of
eq. (14) with(T + I)n−1 we obtain

(T + I)nχ = (T + I)n−1F. (18)

It is inconsistent since theleft hand side (LHS) = 0 while right hand side (RHS) 6= 0. ⊓⊔
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Theorem 5leads to the following corollary that specifies the cycle structure ofC ′(x + 1)n.

Corollary III.1. The cycle structure ofC ′(x + 1)n with F ∈ Fn is

CS′ = µ′(2M); µ′ = 2n−M and M = ⌊log2(n)⌋ + 1 (19)

where the cycle structure ofC(x + 1) (eq. (8), page 1009) is

CS = [1(1) +
m

∑

j=0

µ2j(2j)] where m = ⌈log2(n)⌉.

Proof:
Since the characteristic and minimal polynomial ofC is (x + 1)n - that is, (T + I)n is always = 0.
Therefore, eq. (14) becomes consistent (LHS = RHS = 0), when we premultiply both sides by(T +I)n.
Consequently, eq. (13) is consistent if2j − 1 ≥ n - that is, cycles of length2j exist inC ′ if 2j − 1 ≥
n. The minimum value ofj for which the equation becomes consistent is represented byM, where
2M−1 ≤ n < 2M.

1. If n = 2⌈log2n⌉, thenn is of the form2j ; wherej is an integer. Therefore,⌈log2n⌉ = ⌊log2n⌋ =
log2n. In that case,M= ⌊log2n⌋ +1.

2. If n < 2⌈log2n⌉, thenM = ⌈log2n⌉ = ⌊log2n⌋ +1.

Considering (1) and (2), it can be found thatM = ⌊log2n⌋ +1.
Since all the states fall in the null space of(T + I)2

M

, as pertheorem III.1, theACA can have cycles
only of length2M and the number of cyclic components (µ′) is 2n/2M = 2n−M. ⊓⊔

TheM is denoted as theminimum additive factor. The following example illustrates the results of
theorem 5andcorollary III.1.

Example 4. Let us consider the followingT matrix and two inversion vectorsF1 andF2 of the 4-cell
ACA -

T =











1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1











F1 =











1

1

1

1











F2 =











1

1

1

0











.

The characteristic polynomial and minimal polynomial of theT is (x + 1)4.
The cycle structure of theLCA counterpart with characteristic matrixT is CS = [2(1),1(2),3(4)].
The inversion vectorF1 annihilates(T + I)4. TheACA with characteristic matrixT and the inversion
vectorF1 has the cycle structure [2(8)] (Fig. 3). However,F2 cannot annihilate(T +I)4. TheACA with
characteristic matrixT and the inversion vectorF2 has its cycle structureCS′ identical toCS generated
by theLCA.
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Theorem 5& corollary III.1 can be extended to a more generalized class ofLCA/ACA. As per
theorem 3, it is noted that the cycle structure ofACA - C ′ can differ fromC only if the characteristic
polynomial ofC/C ′ contains a factor of(x+1). That is, the characteristic polynomial can be represented
as

f(x) = (x + 1)n1 · ·(x + 1)nlφl+1(x)nl+1 · ·φN (x)nN

where (i) eachφi(x)ni is an invariant polynomial and (ii) the irreducible factor of the first l invariant
polynomials is(x + 1). The following theorem states the nature of cycle structureof suchLCA and
ACA.

Theorem III.3. The cycle structure ofLCA, with characteristic matrixT and a factor(x + 1) in the
characteristic polynomial, is

CS = [1(1) +
∑

ki

mki
∑

j=0

µ2j ·ki
(2j · ki)]; k1 = 1; (20)

whereas the cycle structure ofACA, with the characteristic matrixT & inversion vectorF and having
the largest(x + 1)-invariant polynomial annihilated byF as(x + 1)ni , is

CS′ =
∑

ki

mki
∑

j=M

µ′
2j ·ki

(2j · ki), k1 = 1 (21)

where

µ′
2M·ki

=



































M
∑

j=0

(µ2j .ki
× 2j · ki) + 1

2M.ki
for k = 1

M
∑

j=0

µ2j ·ki
× 2j · ki

2M·ki
otherwise

and µ′
2j ·ki

= µ2j ·ki
j > M, M = ⌊log2ni⌋ + 1.

Proof:
The proof is developed with the assumption that the(x + 1)ni is theonly factor annihilated byF . The
generalization can be done where(x + 1)ni is thelargestfactor annihilated byF .
The characteristic polynomialf(x) of such aCA is denoted as

f(x) = (x + 1)ni × φ̃(x); φ̃(x) = φ1(x)n1 · ·φi−1(x)ni−1 · φi+1(x)ni+1 · ·φN (x)nN

The cycle structureCSφ̃(x) corresponding tõφ(x) is same for both theLCA andACA. Let F be
the inversion vector which annihilates the factor(x + 1)ni .
As per thetheorem 5, the cycle structures generated due to the factor(x + 1)ni differ in C & C ′ and
these areCS′(x + 1)ni andCS(x + 1)ni (from corollary III.1). From the eqs. (19) & (8), we have

CS′(x + 1)ni = µ′(2M), µ′ = 2ni−M & M = ⌊log2(ni)⌋ + 1
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and CS(x + 1)ni = [1(1) +

m
∑

j=0

µ̃2j(2j)], where m = ⌈log2(ni)⌉.

The cycle structure ofCφ̃(x) follows from eq. (4) and forms alinear cycle structure

CSφ̃(x) = [1(1) +
∑

ki

mki
∑

j=0

µ̂2j ·ki
(2j · ki)]

Therefore, the cycle structuresCS andCS′ are represented as

CS = CSφ̃(x) × CS(x + 1)ni = [1(1) +
∑

ki

mki
∑

j=0

µ̂2j ·ki
(2j · ki)] × [1(1) +

m
∑

j=0

µ̃2j (2j)] (22)

CS′ = CSφ̃(x) × CS′(x + 1)ni = [1(1) +
∑

ki

mki
∑

j=0

µ̂2j ·ki
(2j · ki)] × [µ′(2M)] (23)

The above two cross products2 produceCS andCS′ specified in the eqs. (20) and (21) respectively.
⊓⊔

The results oftheorem III.3are illustrated below.

Example 5. Let us consider theT matrix of the 5-cellCA of Fig. 2 as shown below

T =

















1 0 0 0 0

0 1 1 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 1 1

















.

Consider the threeACA with the characteristic matrix asT having these inversion vectors

F1 =

















0

1

1

0

0

















, F2 =

















1

1

1

0

0

















, andF3 =

















0

1

0

1

1

















.

• The characteristic polynomialf(x) of the exampleLCA/ACA, in invariant polynomial form, is
f(x) = (x + 1)(x + 1)2(x2 + x + 1).

• The inversion vectorF1= [01100] annihilates only(x + 1)2. Therefore,M = ⌊log2(2)⌋ + 1= 2
(corollary III.1). For this case,

2note the appendix for details
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– f(x) can be expressed as̃φ(x) × (x + 1)2, whereφ̃(x) = (1 + x) · (x2 + x + 1).

– The cycle structureCSφ̃(x) = CS(1 + x) × CS(x2 + x + 1) = [1(1), 1(1)] × [1(1), 1(3)]
= [2(1), 2(3)].

– The cycle structureCS(1 + x)2 = [1(1), 1(1), 1(2)], whereasCS′(1 + x)2 = [1(4)].

– The resultant cycle structureCS = CSφ̃(x) × CS(1+x)2 = [[4(1), 2(2)], [4(3), 2(6)]] while
CS′ = CSφ̃(x) × CS′(1 + x)2 = [2(4), 2(12)].

• Similarly, F2 = [11100] annihilates both the invariant polynomials(x + 1) and(x + 1)2. This is,
the case where(x + 1)2 is thelargest factor annihilated byF2. Therefore,CS′ = CS′(x + 1) ×
CS′(x + 1)2 × CS(x2 + x + 1) = [1(4)] × [1(2)] × [1(1), 1(3)] = [2(4), 2(12)]. It is same as that
of the cycle structure generated byF1.

• The changes in cycle structure of each cycle familyki in CS andCS′ respectively are as per eq.
(21) of theorem III.3. For example, 2(4) wherek1 = 1 and2M = 4, the corresponding cycle
structure inC which have got merged inC ′ is [4(1),2(2)]. The cyclic component ofµ22·1 has
been formed as per eq. 21. Hereµ22·1 = 4 × 1 + 2 × 2

4 = 2.

• ConsiderF3 = [01000]. It doesn’t annihilate either(x + 1) or (x + 1)2. Therefore, the cycle
structure ofC andC ′ are the same - [4(1), 2(2), 4(3), 2(6)].

Theorem III.3and the earlier example identify the nature of cycle structure of ACA. The complete
algorithm to compute cycle structure of anACA is described next.

III.4. Enumerating cycle structure of an ACA

The scheme to enumerate cycle structure of anACA is developed based on the theory reported in the
earlier subsections.Theorem 3reports that the cycle structures ofACA and the correspondingLCA are
identical if the characteristic polynomial of the linear operatorT doesn’t contain the factor(x + 1). On
the other hand, if the characteristic polynomial is having the factor(x + 1), then the cycle structure of
theACA is to be computed from eq. (21). However, it requires evaluation ofM - the minimum additive
factor.

Definition 5. The least cycle length of any primary cycle (k) in CS′ (cycle structure ofACA) is given
by 2M · k; whereM is denoted as minimum additive factor.

The value ofM can be deduced fromtheorem 2. The rank of[T k +I] and[T k +I,F ] is successively
compared for allk = 2m · k1, m ≥ 0, until the ranks become equal. The value ofk at which both the
ranks become equal provides the value ofM. The algorithm to deduceM is next elaborated.

Algorithm 1. Enum M(T, F )
Input : T matrix,F Vector
Output :M
M = -1
I,F ]
do{
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M = M + 1
EvaluateF = [I + T + T 2 + .... + T 2M−1]F

Evaluate R1 = rank[T 2M−1 + 1] and R2 = rank[T 2M−1 + I,F ]
}while ( R1 < R2)
returnM

Once theM is enumerated, the cycle structure ofACA - C ′ for eachki-cycle family constituting
CS′ is evaluated from theCS of LCA - C (theorem III.3).

Algorithm 2. Enum CS′ of ACA(T, F , CS′)
Input : Characteristic matrixT and inversion vectorF
Output : The cycle structure ofACA - C ′

Enumerate cycle structureCS of LCA, where

CS = [1(1) +
∑

ki

mki
∑

j=0

µ2j ·ki
(2j · ki)]; ki is odd and [CL] is the set of odd cycles of length ki.

If characteristic polynomial ofT doesn’t have a factor of(x + 1), then
Output the cycle structureCS of C asCS′ of C ′.

else
M = Enum M(T, F )
for eachki ∈ [CL]
{

Evaluateµ′
2M·ki

for eachki following eq. (21)
µ′

2j ·ki
= µ2j ·ki

for ∀ j > M
}

Output CS′ =
∑

ki

mki
∑

j=M

µ2j ·ki
(2j · ki), k1 = 1

The next example illustrates the execution steps of the algorithm. TheACA is represented by itsT
matrix andF vector; theT matrix of this example is the one used in theexample 2.

Example 6. Let the T matrix of a 5-cellACA be

T =

















[1] 0 0 0 0

0 ⌈1 1⌉ 0 0

0 ⌊0 1⌋ 0 0

0 0 0 ⌈0 1⌉

0 0 0 ⌊1 1⌋

















andF =

















1

1

0

1

1

















The matrix[T k + I,F ] is referred to asaugmented matrix.
Step 1 & 2 : Finding characteristic polynomial and cycle structure -
Characteristic polynomialf(x) = (x + 1)3 · (x2 + x + 1)
The cycle structure of theLCA having the characteristic polynomialf(x) is [4(1), 2(2), 4(3), 2(6)].
Step 3 : Finding the values ofM.
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• Rank of(T 1 + I) is 3, while the rank of the augmented matrix is 4. Hence, cycleof length 1 does
not exist.

• Rank of(T 2 + I) is 2, while the rank of the augmented matrix is 3. Hence, cycleof length 2 also
does not exist in theACA.

• Rank of(T 4 + I) is 2, while the rank of the augmented matrix is 2. So, the valueof M is 2.

Step 4 : Finding the components
1. ki =1 µ22·1 = 4×1+2×2+0×4

22·1 = 2.
2. ki =3 µ22·3 = 4×3+2×6+0×12

22·3 = 2.
Hence, the cycle structure becomes [2(4), 2(12)] .

IV. Conclusion

This paper presents the complete scheme to compute the cyclestructure of additive cellular automata
(ACA). The similarities between the cycle structure of anLCA and the cycle structure produced by
theACA is explored. An analytical scheme has been devised to extract the similarities for enumeration
of the cycle structure ofACA. The scheme can be used further to efficiently utilizeACA for different
purposes in the future.

Appendix

Elaboration of the steps to obtain the cross product of eq. (23)
The cycle structure (CS) of an LCA is evaluated from the expression referred in eq. (22). The

expressions forCS noted in eq. (22) is reproduced below along with the final result noted in eq. (20).
The intermediate computation steps are not shown as it can bedirectly obtained through simple cross
product [20].

CS = CSφ̃(x) × CS(x + 1)ni = [1(1) +
∑

ki

mki
∑

j=0

µ̂2j ·ki
(2j · ki)] × [1(1) +

m
∑

j=0

µ̃2j (2j)]

= [1(1) +
∑

ki

mki
∑

j=0

µ2j ·ki
(2j · ki)]; k1 = 1;

The cycle structure (CS′) of ACA is evaluated through eq. (23) reproduced below.

CS′ = CSφ̃(x) × CS′(x + 1)ni = [1(1) +
∑

ki

mki
∑

j=0

µ̂2j ·ki
(2j · ki)] × [µ′(2M)]

The cross product of eq. (23) produces eq. (21) (page 1013). As can be seen from eq. (21), the
cyclic components ofCS′, µ′

2j ·ki
has some relationship withµ2j ·ki

- the cyclic components ofCS.
This section establishes the relationship defined in eq. (21). The relationship betweenµ2j ·ki

andµ′
2j ·ki

comprises of two parts - (a) wherej > M and (b) wherej ≤ M
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Let us consider a particular cycle familyki. We (1) first show that the number of states encompassed
by a the family is same for bothCS andCS′. (2) Then we showµ2j ·ki

= µ′
2j ·ki

for j > M and finally
(3) establish the relation betweenµ′

2M·ki
andµ2j ·ki

for j ≤M.
1. Computing the number of states in a familyki.

From eq. (5), product ofµk1i1
(k1i1) andµk2i2

(k2i2) results in the cyclic componentµk of lengthk,
whereµk = µk1i1

.µk2i2
.gcd(k1i1 , k2i2) andk = lcm(k1i1 , k2i2). Therefore, the number of states involved

in forming the cycle is given by

µ × k = (µk1i1
.µk2i2

.gcd(k1i1 , k2i2)) × (lcm(k1i1 , k2i2)) = µk1i1
.µk2i2

.k1i1 .k2i2 (24)

The above result can be applied to compute the number of states of a particular familyki in CS and
CS′. Let refer cycle structure ofki family asCS(ki) andCS′(ki) for LCA andACA respectively.
The number of states covered are considered asS(ki) andS′(ki) respectively inCS(ki) andCS′(ki).
Therefore,

CS(ki) =

mki
∑

j=0

µ̂2j ·ki
(2j · ki) × [1(1) +

m
∑

j=0

µ̃2j (2j)] ⇒ S(ki) =

mki
∑

j=0

(µ̂2j ·ki
× 2j · ki × [1 × 1 +

m
∑

j=0

(µ̃2j × 2j)])

Similarly,

CS′(ki) =

mki
∑

j=0

µ̂2j ·ki
(2j · ki) × [µ′(2M)] ⇒ S′(ki)] =

mki
∑

j=0

(µ̂2j ·ki
× 2j · ki × µ′ × 2M)

From the eqs. (19) & (8), we have

µ′ × 2M = 1 +
m

∑

j=0

µ̃2j (2j) (25)

Therefore,S(ki) = S′(ki) — Result (1).
2. Theµ2j ·ki

= µ′
2j ·ki

for j > M.

CS = CSφ̃(x) × CS(x + 1)ni = [1(1) +
∑

ki

mki
∑

j=0

µ̂2j ·ki
(2j · ki)] × [1(1) +

m
∑

j=0

µ̃2j (2j)]

= [1(1) +

m
∑

j=0

µ̃2j (2j) +
∑

ki

(

mki
∑

j=0

µ̂2j ·ki
(2j · ki) × [1(1) +

m
∑

j=0

µ̃2j (2j)])]

= [1(1) +
m

∑

j=0

µ̃2j (2j) +
∑

ki

(
M
∑

j=0

µ̂2j ·ki
(2j · ki) × [1(1) +

m
∑

j=0

µ̃2j (2j)] +

mki
∑

j=M+1

µ̂2j ·ki
(2j · ki) × [1(1) +

m
∑

j=0

µ̃2j (2j)])]

(i) Considering2j = 2j · ki, wherek1 = 1 & sincem ≤M (eqs. (19) & ( 8))

CS = [1(1) +
∑

ki

(

M
∑

j=0

µ2j ·ki
(2j · ki) +

mki
∑

j=M+1

µ̂2j ·ki
× [1(1) +

m
∑

j=0

µ̃2j (2j)](2j · ki))]
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CS′ = CSφ̃(x) × CS′(x + 1)ni = [1(1) +
∑

ki

mki
∑

j=0

µ̂2j ·ki
(2j · ki)] × [µ′(2M)]

= [µ′(2M)] +
∑

ki

[

mki
∑

j=0

µ̂2j ·ki
(2j · ki) × µ′(2M)]

= [µ′(2M)] +
∑

ki

[(

M
∑

j=0

µ̂2j ·ki
(2j · ki) × µ′(2M)) + (

mki
∑

j=M+1

µ̂2j ·ki
(2j · ki) × µ′(2M))]

(ii) Considering2M = 2M · ki, wherek1 = 1.

CS′ =
∑

ki

[(

M
∑

j=0

(µ2M·ki
(2M · ki)) +

mki
∑

j=M+1

µ′ × 2M × µ̂2j ·ki
(2j · ki)]

For j > M

µ2j ·ki
= µ̂2j ·ki

× [1 +
m

∑

j=0

µ̃2j (2j)]

µ′
2j ·ki

= µ′ × 2M × µ̂2j ·ki

Therefore,µ2j ·ki
= µ′

2j ·ki
for j > M (eq. (25)) – Result (2).

3. Computation ofµ′
2M·ki

Combining the results (1) and (2), the number of states covered by the cycles of length≤ 2M · ki are
same for bothLCA andACA.

The states covered byACA areµ′
2M·ki

× 2M · ki.

Similarly, the states covered by anLCA for anyki 6= 1 are
M
∑

j=0

µ2j ·ki
× 2j · ki

Therefore,

µ′
2M·ki

=

M
∑

j=0

µ2j ·ki
× 2j · ki

2M · ki

; ki 6= 1

However, the states covered by theLCA for ki = 1 are
M
∑

j=0

(µ2j ·ki
× 2j · ki) +1 and, therefore,

µ′
2M·ki

=

1 +

M
∑

j=0

µ2j ·ki
× 2j · ki

2M · ki

; ki = 1
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