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Abstract. In peer-to-peer (p2p) networks, peer nodes communicate with
each other with the help of overlay structure. As the peers in the p2p sys-
tem join and leave the network randomly, it makes the overlay network
dynamic and unstable in nature. In this paper, we propose an analytical
framework to assess the robustness of different topologies adopted by
these overlay structures, to withstand the random movement of peers
in the networks. We model the dynamic behavior of the peers through
degree independent as well as degree dependent node failure. Recently
superpeer networks are becoming the most widely used topology among
the p2p networks [8]. Therefore we perform the stability analysis of su-
perpeer networks as a case study. We validate the analytically derived
results with the help of simulation.
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1 Introduction

Peer to peer (p2p) networks have recently become a popular medium through
which huge amount of data can be shared. P2p file sharing systems, where files
are searched and downloaded among peers without the help of central servers,
have emerged as a major component of Internet traffic. Peers in p2p networks
are connected among themselves by some logical links forming an overlay above
the physical network. It has been found that these overlay networks, consisting
of a large amount of peers are analogous to complex real world networks and can
be modeled using various types of random graphs [15]. Generally the degrees of
these random graphs are statistically distributed and become the characteristic
feature of the topology of the overlay networks.
The topology of the overlay network is important from two aspects.

– The spread of information flow through the network is essential to perform
efficient search in the p2p networks. The speed at which information spread
is dependent on the topology of the network.

– As peers in the p2p system join and leave network randomly without any
central coordination, overlay structures become highly dynamic in nature.
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Frequently it partitions the network into smaller fragments which results in
the breakdown of communication among peers.

In this paper we concentrate on understanding the stability1 of the overlay struc-
tures which is a major challenge in front of the p2p network community. There is
no formal framework available to measure the stability of various overlay struc-
tures modeled by random graphs. However different works in bits and pieces
have been done mainly by the physicists which analyzes the dynamics of ran-
dom graphs. Effect of random failures and intentional attacks in various kind
of graphs are discussed by Cohen et al. in [1, 2]. It has been observed from the
results that Internet, which can be modeled by power law networks is more re-
silient to random failure than E-R graphs (Poisson random graphs). They also
found both analytically and experimentally that scale free networks are highly
sensitive to intentional attack leading support to the view of Albert [3]. In [4],
Newman et al. developed the theory of random graphs with arbitrary degree
distribution with the help of generating function formalism. Using this formal-
ism, Callaway [5] found the exact analytic solutions for percolation2 on random
graphs with any degree distribution where failure has been modeled by an arbi-
trary function of node degree. In [7], researchers have addressed a more realistic
scenario in which a network is subjected to simultaneous targeted and random
attacks. This attack has been modeled as a sequence of “waves” of targeted and
random attacks which removes fractions pt and pr of the nodes of the network.
In all these works except [5], researchers have considered some particular types
of networks like E-R, scale free or bimodal networks and analyzed the effect of a
few specific kinds of failures like random, intentional or mixed upon them. In [5],
researchers have dealt a more general case but failed to propose any generalized
equation to measure the stability of random graphs. This paper utilizes many
of aforesaid results and proposes a generalized equation to measure stability of
p2p overlay structures against dynamic movement of peers.
As examples of random and frequent movement of peers, we model two kinds of
node failures in random graph.

– The most common type of failures are denoted as degree independent failure
where probability of removal of a node is constant and independent of degree
of that node.

– In p2p networks, peers having higher connectivity (e.g. superpeers) are more
stable in the network than the peers having lower connectivity because those
loosely connected peers enter and leave the network quite frequently. These
observation leads us to model a new kind of failure where probability of
removal of a node is inversely proportional to the degree of that node. We
denote this kind of failure as degree dependent failure.

1 In this paper, we do not differentiate between the terms stability and robustness.
They are therefore used interchangeably.

2 Percolation indicates the existence of a critical probability pc such that below pc

the network is composed of isolated clusters but above pc, a giant cluster spans the
entire network.
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As example of topology, we consider superpeer networks. This is because, as most
widely used overlay structures, considerable amount of interest has been recently
generated in understanding the stability of these networks. We also verify the
correctness of our theoretical model with the help of experimental results.
The rest of the paper is organized as follows. Section 2 models the generalized
random graph for any kind of failures. It shows the condition for giant component
disruption for any kind of disturbances in the networks. In section 3 we classify
two different kinds of random failure and mathematically analyze their effect on
the generalized random graph. Section 4 theoretically examines the stability of
superpeer networks for degree independent and degree dependent failures. This
section also compares the results derived from our mathematical model with
experimental results. Section 5 concludes the paper.

2 Stability analysis of overlay networks

In this section, we use generating function formalism to derive the general for-
mula for measuring the stability of overlay structures undergoing failure. We
formally model the overlay structures and various kinds of failures and define
the stability metric which are the parameters of our analytical framework.

2.1 Topology of the overlay networks

The different types of overlay structure of the p2p networks can be modeled
using the uniform framework of probability distribution pk, where pk be the
probability that a randomly chosen node has degree k. So the degree distribution
pk signifies the topology of the overlay network which can be modeled as E-R
graph, power law network, superpeer network or any other arbitrary topology.
The most common overlay structures are the simple unstructured p2p networks
where data are shared among peers in a naive fashion. In such a system like
Gnutella [12], all peers have equal roles and responsibilities. Such topologies can
be modeled by E-R graph with degree distribution pk = zke−z

k! where z is the
mean degree or power law network pk = ck−β where β is a parameter and c is a
constant.
Recently, the superpeer networks have become a potential candidate to model
overlay structure where a small fraction of nodes are superpeers and rest are
peers. Many popular p2p systems like KaZaA [13] have adopted superpeers in
their design. A superpeer node having higher connectivity, acts as a centralized
server to a subset of clients where client peers submit queries to their superpeer
and receive results from it. However superpeers are also connected to each other
to route messages over the overlay network and submit and answer queries on
behalf of their clients and themselves. Superpeer networks can be modeled by
bimodal degree distribution where a large fraction (r) of peer nodes with small
degree kl are connected with superpeers and few superpeer nodes (1 − r) with
high degree km are connected to each other. Formally

pk > 0 if k = kl, km; pk = 0 otherwise
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kl & km are degrees of peers and superpeers respectively.

2.2 Different kinds of failure models

Let qk be the probability that a vertex of degree k be present in the network
after the removal of a fraction of nodes. In our framework qk is used to specify
the various failure models.

– In degree independent random failure, the probability of removal of any
randomly chosen node is constant, degree independent and equal for all
other nodes in the graph. Therefore the presence of any randomly chosen
node having degree k after this kind of failure is qk = q (independent of k).

– In degree dependent random failure, probability of failure of a node (fk)
having degree k is inversely proportional to kγ . i.e fk ∝ 1/kγ ⇒ fk = α/kγ

where 0 ≤ α ≤ 1 and γ is a real number. Therefore probability of the
presence of a node having degree k after this kind of failure is qk = (1− α

kγ ).

2.3 Stability metric

The stability and robustness of overlay networks are primarily measured in terms
of certain fraction of nodes fc called percolation threshold or critical fraction [10],
removal of which disintegrates the network into smaller, disconnected compo-
nents. Below that threshold, their exists a connected component which spans
the entire network also termed as giant component3. The value of percolation
threshold or critical fraction fc signifies the stability of the network, higher value
indicates greater stability against failure.

2.4 Generating function formalism

Based upon the above described model parameters, we use generating function
formalism to find out the general formula to measure the stability of various
overlay structures. In mathematics a generating function is a formal power series
whose coefficients encode information about a sequence that is indexed by the
natural numbers [4]. This generating function can be used to understand different
properties of graphs. For example, the generating function G0(x) generates the
probability distribution of the vertex degrees k. Therefore G0(x) =

∑∞
k=0 pkxk

where pk is the probability that a randomly chosen vertex in the graph has degree
k. Importance of the generating function lies in the convenient way the average
over the probability distribution can be generated - for instance, the average
degree z of a vertex in the case of G0(x) is given by z = 〈k〉 =

∑
k kpk = G′0(1).

Higher moments can be calculated from higher derivatives also. Here we are
using the generating function to explain a slightly more complicated concept.

3 Giant component is a technical term which signifies the largest connected component
in the network whose size is of the order of size of the network [11].
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In our formalism qk and pk specifies the failure model and network topology
respectively whose stability is subjected to examination. The formalism helps
us to locate the transition point where the giant component breaks down into
smaller components. pk.qk specifies the probability of a node having degree k to
be present in the network after the process of removal of some portion of nodes
is completed. Hence

F0(x) =
∞∑

k=0

pk.qkxk

becomes the generating function for this distribution. Distribution of the out-
going edges of the first neighbor of a randomly chosen node can be generated
by

F1(x) =
∑

k kpkqkxk−1

∑
k kpk

= F ′0(x)/z

where z is the average degree [5].

= +  + +  +  .+  . . .

Fig. 1. Schematic representation of the sum rule for the connected component of ver-
tices reached by following a randomly chosen edge. The probability of each such com-
ponent (left-hand side) can be represented as the sum of the probabilities (right hand
side) of having no vertex (which has been removed), only a single vertex, having a sin-
gle vertex connected to one other component, or two other components, and so forth.
The entire sum can be expressed in closed form as equation (1) and similarly (2).

Let H1(x) be the generating function for the distribution of the component
sizes that are reached by choosing a random edge and following it to one of its
ends. The component may contain zero node if the node at the other end of the
randomly selected edge is removed, which happens with probability 1−F1(1), or
the edge may lead to a node with k other edges leading out of it other than the
edge we came in along, distributed according to F1(x). That means that H1(x)
satisfies a self-consistency condition (Fig. 1) of the form [5]

H1(x) = 1− F1(1) + xF1(H1(x)). (1)

The distribution for the component size to which a randomly selected node
belongs to is similarly generated by (Fig. 1) H0(x) where

H0(x) = 1− F0(1) + xF0(H1(x)). (2)
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Therefore the average size of the components becomes

H ′
0(1) = 〈s〉 = F0(1) +

F ′0(1)F1(1)
1− F ′1(1)

which diverges when 1 − F ′1(1) = 0. Size of the component becoming infinite
implies that the entire network joins together forming one giant component.

F ′1(1) = 1 ⇒
∞∑

k=0

kpk(kqk − qk − 1) = 0 (3)

The equation (3) states the critical condition for the stability of giant component
with respect to any type of graphs (characterized by pk) undergoing any type
of failure (characterized by qk). Formulating this general formula is the primary
contribution of the paper. In the rest of the paper, we investigate the stability
situation under various special conditions.

3 Stability at various failure scenario

We have seen that random movement of the peers in the p2p network can be
modeled by different kinds of failures in the complex graph. As discussed, we ad-
dress two kinds of random failures - degree independent and degree dependent.
In the next two subsections, we deal with these two kinds of failures and inves-
tigate their effect on the stability of overlay structure modeled by generalized
random graph.

3.1 Degree independent random failure

In this section, we discuss the effect of degree independent random failure in
generalized random graph. If q = qc is the critical fraction of nodes whose pres-
ence in the graph is essential for the stability of the giant component after this
kind of failure then according to equation (3)

∞∑

k=0

kpk(kqc − qc − 1) = 0

⇒ qc =
1

〈k2〉
〈k〉 −1

Now if fc is the critical fraction of nodes whose random removal disintegrates
the giant component then fc = 1− qc . Therefore percolation threshold

fc = 1− 1
〈k2〉
〈k〉 −1

(4)

This is the well known condition [1] (derived differently) for the disappearance
of the giant component due to random failure. Note that, we have reproduced it
to show that it can also be derived from the proposed general formula (equation
3).
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3.2 Degree dependent random failure

In p2p networks, the peers (or superpeers) having higher connectivity are much
more stable and reliable than the nodes having lower connectivity. Therefore
probability of the presence of a node having degree k after this kind of failure is

qk = (1− α

kγ
). (5)

Using equations (3) and (5), we obtain the following critical condition for the
stability of giant component after degree dependent breakdown

〈k2〉 − α〈k2−γ〉+ α〈k1−γ〉 − 2〈k〉 = 0

where percolation threshold is

fc =
∞∑

k=0

α

kγ
pk.

Considering the value of α = 1, where the fraction of nodes removed due to this
kind of failure becomes maximum, the condition for percolation becomes

〈k2−γ〉 − 〈k1−γ〉 = 〈k2〉 − 2〈k〉 (6)

Thus the critical fraction of nodes removed is given by

fc =
∞∑

k=0

1
kγ

pk. (7)

where γ satisfies the equation (6).
Thus from the equations (6) and (7), we can determine the variation of

percolation threshold fc for various networks due to degree dependent random
failure. We apply these formalism for superpeer networks and compare the results
with experimental results in section 4.

4 Case study: Stability of superpeer networks with
respect to failure models

In this section we study the robustness of the superpeer networks with the help of
our analytical framework. We investigate the change of percolation threshold (fc)
due to the change of fraction of peers (r) and the connectivity of the superpeers
(km) in the networks for various types of failure. To ensure fair comparisons,
we keep the average degree 〈k〉 constant for all graphs. We verify our theoretical
results with the help of experiments; the experimental setup is explained below.
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4.1 Experimental setup

The p2p overlay structure is represented by a simple undirected graph stored
as an adjacency list. In order to generate the topology, every node is assigned
a degree according to the topology being simulated. In the case of bimodal net-
work the nodes are assigned the degrees depending on the kl and km values and
the fraction of these nodes in total. Thereafter the edges are generated using the
“switching method” and the “matching method” referred to in [14]. However
since these methods (as far as our knowledge goes, no better method exists) do
not sample the total ensemble of all possible desired graphs (here bimodal) uni-
formly, the experimental results might vary a little from the theoretical results.
Failure of a peer effectively means deletion of the node and its corresponding
edges. In the case of degree independent failure, nodes are randomly selected
using a time-seeded pseudo-random number generator and its edges removed
from the adjacency list. In degree dependent failure, first the fraction of nodes
having a certain degree that need to be removed is calculated, thereafter that
many nodes are selected from the total set of all such nodes randomly and its
corresponding edges are removed from the adjacency list.

4.2 Degree independent failure

Bimodal structure is mostly used to model superpeer networks. Let r be the
fraction of peers in the superpeer networks having degree kl and and rest are
superpeers having degree km where kl << km. Therefore bimodal degree distri-
bution pk becomes non zero only at kl and km [6]. Mathematically

klpkl
+ kmpkm = 〈k〉 and pkl

+ pkm = 1 which provides

pkm =
〈k〉 − kl

km − kl
pkl

=
km − 〈k〉
km − kl

⇒ 〈k2〉 = k2
mpkm + k2

l pkl
= 〈k〉(kl + km)− klkm and using equation (4) we get

fc = 1− 〈k〉
〈k〉(kl + km − 1)− klkm

As the fraction of peers having degree kl in the network is r therefore the average
degree of the network 〈k〉 = klr+km(1−r) implies that kl = 〈k〉−(1−r)km

r . Hence
percolation threshold

fc = 1− 〈k〉r
〈k〉2 − 2〈k〉km + 2rkm〈k〉 − r〈k〉+ k2

m − rk2
m

(8)

Using equation (8), we study the variation of percolation threshold (fc) due to
the change of the fraction of peers (r)(Fig 2(a)). Here we keep the average degree
〈k〉 = 5 fixed and vary the superpeer degree km = 25, 30, 40 for each curve. The
results for the same parameters are also deduced experimentally and shown in
Fig 2(b). We first explain the features commonly observed in both theoretical
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Fig. 2. The above plots represent critical fraction (fc) Vs fraction of peers (r) for vari-
ous superpeer networks undergoing degree independent failure. Here X-axis represents
the fraction of peer nodes (r) exists in the superpeer network and Y-axis represents
the corresponding critical fraction or percolation threshold (fc).

and practical results and then provide a comparative study between the two
results.

General observations: It can be observed (in both theoretical and exper-
imental results) that with the increase of the fraction of peers in the network,
the percolation threshold decreases which indicates the increase of fragility of
the network. That means increase of the fraction of superpeers in the network
improves the stability of the network. When the fraction of superpeers is above
15% to 20% , the percolation threshold is quite high. But after that, there is a
sharp fall of fc thus drastically increases the vulnerability of the network.

Comparative study between theoretical and experimental results:
It can be observed from the theoretical (Fig.2(a)) and experimental (Fig.2(b))
results that the behavior of critical fraction (fc) with the change of the percent-
age of peers (r) is almost same for both cases. The only significant observation
for the experimental result is when percentage of superpeers is quite high (80% to
90%), the value of fc starts from a lower value. With the decrease of superpeers
fraction, fc goes up and reaches an optimum value. This indicates the optimum
superpeer to peer ratio for which overlay network becomes most stable due to
this kind of failure. The further decrease of superpeers again reduces the value of
fc. The initial increase of fc cannot be captured by our analytical model. From
the theoretical perspective, giant component size is the order of the network size
and is intuitively considered same for all cases. But in practice, giant component
is a finite fraction of size of the network which is not fixed for all cases but may
vary (albeit slightly) from case to case. For the lower values of r (i.e. percent-
age of superpeers is high), some superpeers remain isolated in the network thus
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reducing the size of the giant component. This results in lower values of fc. But
with the decrease of percentage of superpeers, all the superpeers get connected
which increases the stability of the network.
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Fig. 3. Change of γc with respect of superpeer degree km for superpeer networks un-
dergoing degree dependent failure. Here mean degree 〈k〉 varies from 8 to 16. X-axis
represents the superpeer degree(km) and Y-axis represents the corresponding γc.

4.3 Degree dependent failure

As introduced in section 2, in this case the probability of failure of a node is
inversely proportional to the degree of that node. Mathematically the fraction of
nodes removed f =

∑∞
k=0

α
kγ pk. According to equation (6), the bimodal network

percolates if
〈k2−γ〉 − 〈k1−γ〉 = 〈k2〉 − 2〈k〉.

If the value of γ = γc satisfies this equation then removal of fc =
∑∞

k=0
1

kγc pk

fraction of nodes destroys the giant component. In most of the commercial su-
perpeer networks like KaZaA [13], peers are only directly connected to the local
superpeer making their degree kl = 1. In that case, the value of γc which perco-
lates the bimodal network can be derived from equation (6) and becomes

γc = 1−
ln 〈k〉(km+1)−km−2〈k〉

〈k〉−1

ln km
(9)

where lowest degree is assumed to be kl = 1. We plot the variation of the γc

that is required to percolate the bimodal networks with respect to the superpeer
degree km for various average degree 〈k〉(Fig 3(a)). Like degree independent fail-
ure, the results for the same parameters are also deduced experimentally and
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shown in Fig 3(b). We first explain the features commonly observed in both
theoretical and practical results and then provide a comparative study between
the two results.
General observations: It can be easily identified from Fig 3, that with the in-
crease of superpeer degree, the value of γc that percolates the network decreases.
These curves can be approximated by the polynomial a/(x− b) (0 < a < 1 and
b is some positive integer). Thus the decrease of γc follows hyperbolic trajectory.
Another interesting observation is after a certain threshold km, the curves be-
come parallel to the X-axis and never cuts it thus the value of γc is small but
never becomes 0 (in that case fc =

∑∞
k=0

1
k0 pk = 1). It implies that for any large

value of km, although fc becomes significantly large however it is required to
remove only a part of nodes (and not all the nodes) from the network to dissolve
the giant component.
Comparative study between theoretical and experimental results: In
the case of degree dependent failure, the experimental results (Fig.3(b)) differ
from theoretical (Fig.3(a)) for lower average degree 〈k〉 but matches quite well
for higher values of 〈k〉. In both cases, initially γc decreases with the increase of
superpeer degree (km). But after crossing a threshold value (which also reflects
the optimum superpeer degree), further increases of km increases the value of γc

which is not reflected by the theoretical analysis. The reason is almost same as
explained in degree independent failure. Keeping average degree constant and
increasing the superpeer degree leaves many of the superpeers isolated. This
decreases the stability of the network thus increases the value of γc. This phe-
nomenon becomes significant when the average degree of the network is low.

5 Conclusion and future work

The basic contribution of this work is the development of general framework to
analyze the stability of various p2p overlay structures against dynamic movement
of peers. We have modeled the behavior of these peers using degree independent
and degree dependent random failure. As superpeer networks are currently most
promising and widely used overlay structure, we perform stability analysis of
these networks as a case study of our analytical model. It has been observed
that when the fraction of superpeers in the network is less than 15%, the robust-
ness of the network sharply decreases for degree independent failure. This result
points to a zone where superpeer network is most vulnerable. Similarly for degree
dependent failure, our analysis shows that increase of superpeer degree improves
the stability of the network and the improvement follows a hyperbolic trajectory.
Although our theoretical and experimental results have matched fairly, however
the little differences between them result from the contradiction of the theoret-
ical and practical concept of giant component. Difficulties to generate accurate
graph with a given degree sequence are also responsible for the slight mismatch
between theoretical and experimental results.
Deeper look into the differences between experimental and theoretical results
is part of our future work. Similarly we have to perform a detailed compara-
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tive study of the stability of various overlay topologies like E-R graph, power
law network, various kinds of superpeer networks like mixed Poisson and bi-
modal structure etc. In addition to the simple failure models discussed here, in
future we will consider different kinds of attacks where nodes having more im-
portance are been targeted and attacked to destroy the connectivity of the p2p
network. Importance of a node can be determined by degree centrality, between-
ness, eigenvector centrality etc. Moreover, comparative stability analysis of all
these topologies with respect to combination of different attacks and failures will
bring completeness to the work.
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