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Learning Linear In�uence Models in Social Networks from
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Social networks, forums, and social media have emerged as global platforms for forming and shaping
opinions on a broad spectrum of topics like politics, sports and entertainment. Users (also called ‘actors’)
o�en update their evolving opinions, in�uenced through discussions with other users. �eoretical models
and their analysis on understanding opinion dynamics in social networks abound in the literature. However,
these models are o�en based on concepts from statistical physics. �eir goal is to establish various regulatory
phenomena like steady state consensus or bifurcation. Analysis of transient e�ects is largely avoided. Moreover,
many of these studies assume that actors’ opinions are observed globally and synchronously, which is rarely
realistic. In this paper, we initiate an investigation into a family of novel data driven in�uence models that
accurately learn and �t realistic observations. We estimate and do not presume edge strengths from observed
opinions at nodes. Our in�uence models are linear, but not necessarily positive or row stochastic in nature. As
a consequence, unlike the previous studies, they do not depend on system stability or convergence during the
observation period. Furthermore, our models take into account a wide variety of data collection scenarios.
In particular, they are robust to missing observations for several time steps a�er an actor has changed its
opinion. In addition, we consider scenarios where opinion observations may be available only for aggregated
clusters of nodes — a practical restriction o�en imposed to ensure privacy. Finally, to provide a conceptually
interpretable design of edge in�uence, we o�er a relatively frugal variant of our in�uence model, where the
strength of in�uence between two connecting nodes depend on the node a�ributes (demography, personality,
expertise etc.). Such an approach reduces the number of model parameters, reduces over��ing, and o�ers a
tractable and explicable sketch of edge-in�uences in the context of opinion dynamics. With six real-life datasets
crawled from Twi�er and Reddit, as well as three more datasets collected from in-house experiments (with 102
volunteers), our proposed system gives signi�cant accuracy boost over four state-of-the-art baselines. We also
observe that a careful design of edge strengths using node properties is crucial, since it o�ers substantially
be�er performance than the one with independent edge weights.

CCS Concepts: •Social networks →xx; •Opinion dynamics →xx; •Linear models →xx ; •In�uence
learning →xx;

Additional Key Words and Phrases: Social newtorks, opinion dynamics

ACM Reference format:
Abir De, Sourangshu Bha�acharya, Parantapa Bha�acharya, Niloy Ganguly, and Soumen Chakrabarti. 2017.
Learning Linear In�uence Models in Social Networks from Transient Opinion Dynamics. ACM
Trans. Web 99, 99, Article 99 ( 2017), 31 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

XX.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2009 ACM. 1559-1131/2017/99-ART99 $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

ACM Transactions on the Web, Vol. 99, No. 99, Article 99. Publication date: 2017.



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

99:2 De et al.

1 INTRODUCTION
A colossal recent growth has been witnessed in the number of social media users, who use them
as digital pinboards to express their opinions through extensive discussions on breaking news,
political issues, sports events, celebrities, new products, etc. �us, these platforms have come to
play a crucial role in forming and shaping people’s opinion on a topic. In fact, various agencies
routinely use social media to tap people’s opinion on the issues of interest. Naturally, modeling
and estimating opinion dynamics over social networks has been studied widely by sociologists and
psychologists [5, 9, 10, 16, 24, 26, 33].
In this paper we initiate a thorough study of graph models for opinion dynamics, where a user,

modeled as a node in a social network, forms her opinion about a topic by observing the opinions
of her neighbors. In general, opinion can be polarized or categorical. In our most general setup, we
can capture only incomplete and asynchronous opinion readings at the nodes, and need to model
and estimate the polarity and intensity of in�uence each node exercises on its neighbors via edges.

1.1 Prior work and limitations
Research on opinion dynamics has been initiated long before from the inception of online social
networks, predominantly following models based on statistical physics [5, 9, 16, 24, 26, 33]. �ey
were primarily designed to capture various speci�c phenomena in the context of opinion exchange
e.g., consensus, polarization, etc. However, the parameters of such models are rarely data driven.
�erefore, the weights or in�uences of neighbors are o�en set to be identical or arbitrary [9, 24, 33],
without regard to observed behavior. In addition, since these models bank on some conditions
catering to one or more speci�c scenarios, they [16, 24, 26] o�en implicitly favor that opinions
converge and/or consensus or polarization is reached as a steady state. However, the most critical
time to model social in�uence is arguably before steady state is a�ained — when the system is
still showing transient behavior. �e feasibility and need for studying the transient behavior has
arisen from the large amount of user-generated content, e.g., tweets, which are now available
for analysis. Subsequently, market survey has become ubiquitous on social media. For example,
people’s ratings on leaders are collected almost every month through various polls, rather than
just before elections; the sentiment of people on various issues can be continuously assessed from
the comments/tweets they post. �ese ratings or sentiments continuously �uctuate over time and
do not really se�le to a �xed value. Hence, any current state of opinion observed at some point of
time is merely a transience, which quickly changes a�er some time. �erefore, assumptions like
convergence, consensus or polarization are too restrictive, and may not re�ect realistic situations.
Models inherited from statistical Physics perform quite poorly in a data driven scenario, as our
experimental results emphatically establish (Section 8).
Modeling in�uence during transience is only one aspect where idealized models fall short of

reality. Another critical need is to model the ways in which opinion data can be practically captured
to estimate in�uence models. �e most desired way of such data acquisition is collecting the
opinion of an individual as soon as it is updated (push mode). Such a se�ing would capture the
most information for opinion dynamics. For corporations like Facebook or Twi�er, a real time
and exact copy of the data is available, and therefore, they can a�ord to collect data in push mode.
However, in many cases where the exhaustive data collection is costly, it may be practical to collect
it only intermi�ently (pull mode). For example, opinion about political leaders may be collected in
monthly surveys; companies may estimate brand sentiments aggregated to a granularity of weeks,
etc. �e number of actual value updates between polls may vary widely across actors and time. E.g.,
people may update their opinions much more frequently before and during an election. Another
crucial example of sporadic data collection is crawling from Twi�er. Currently, Twi�er allows
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Opinion Dynamics 99:3

only a 1% sample to be crawled free of cost, that too, within a weekly timeline. �erefore, any
such collection must miss a large fraction of tweets. Any model that assumes complete or perfect
knowledge of opinion updates will be quite fragile in practice. A major challenge we faced in this
work is to develop in�uence models that are robust in the face of sporadic and incomplete data
updates.

1.2 Present work
We initiate investigation into the following type of in�uence models. We assume that agents (nodes
in a social graph) have quantitative opinions which are real continuous numbers, and these agents
in�uence each other through the edges. In some applications (such as polls involving ratings), this
numeric opinion is directly visible. In applications where users express themselves via text (e.g.,
Twi�er, Zomato reviews) text can be converted into estimates of numeric opinion [44]. We further
assume that in�uence is linear in nature, i.e. the opinion of a user changes as a linear function of the
opinions of her neighbors. �e weights of this linear function re�ect the corresponding in�uence
of one user on another. Such an assumption makes the proposed models tractable, explainable and
learnable. However, unlike the DeGroot consensus model [16], we do not enforce a row-stochastic
structure on the in�uence matrix or assume the existence of a steady state consensus, polarization,
or fragmentation.

In addition to the above modeling choice— that considers in�uence for each edge independently—
we also consider a relatively frugal variant of our models (having fewer parameters) where in�uence
between two nodes mainly depends on their properties (in case of people, this might be clubbed into
“personalities”). From detailed experimentation, we notice that, despite having fewer parameters,
such a model provides a more accurate predictive performance than its per-edge counterpart, which
is a surprising observation to us.
Subsequently, we consider a wide variety of data observation regimes described below, which

requires us to devise signi�cant modi�cations to the basic linear model. To that aim, we design a
family of opinion dynamical models and the corresponding parameter estimation methods, where
the models are several variants of the basic unrestricted linear opinion propagation system. Each of
these variants works in di�erent data observation se�ing, and by doing so, the proposed approach
is able to �esh out the inchoate idea of a simple linear model into a complete robust modeling suit,
capable of operating over di�erent aggressive realistic se�ing.
Observation regimes.We assume four diverse data-collection se�ings. Inwhat follows, a ‘message’
or ‘post’ is the (local) announcement of change in opinion value at a node, such as one tweet.
—Full observation: Here, we assume that all posts that are made on the timeline of the users are
available.
—Periodic observation:Here, we assume that the data collector misses data in regular (equal) intervals.
—Aperiodic observation:�is is amore realistic situationwherewe assume that, the posts are collected
intermi�ently at irregular (not equal) intervals.
—Mesoscaled observation: As opposed the above three scenarios where opinions are collected for
each individual, here, we consider, opinion is collected aggregated over clusters of nodes, rather
than polling individual nodes.
Experimental validation. We report on a series of experiments with nine data sets to validate
our in�uence model and estimation algorithms. �ree of these were collected by running controlled,
in-house, social opinion exchange processes. In these processes, we a�empted to capture every
opinion change of all participants. �ey were told to form opinions based solely on discussions
with designated social network neighbors. �ese datasets helped us to validate our model in a full
observation se�ing which is di�cult to avail in practice. We collect six more data sets from Twi�er
and Reddit. For each of these datasets, our proposed methods o�er substantial accuracy gains in
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99:4 De et al.

predicting the opinion of users, beyond several strong baselines, for all data collection scenarios.
In addition, we observe that mesoscaling can provide be�er performance in forecasting collective
opinion of a group of users.
Summary of contributions. We make the following contributions in this paper.
— Models for learning transient opinion dynamics: We learn a linear opinion propagation dynamical
model from observed opinion values of the individual users agents without appealing to steady state
behavior. To the best of our knowledge, our framework (a) is the �rst that makes no assumption
about consensus, polarization, or fragmentation; (b) works in a potentially transient se�ing, and
(c) regularizes edge parameter estimates using node properties, and (d) faithfully matches real-life
network observations.
—In-house games for full observation data: In the real world, users are in�uenced by multiple sources
of information. Since it is practically impossible to collect all the posts from all the di�erent sources
of information that in�uence users, we conducted three in-house games with around 100 users
who were connected in a speci�ed network structure. �ey expressed their views on three topics.
�e users directly provided their opinion along with their messages for each post. �is clean, full
observation data set helps make initial assessments of models while avoiding the complications
arising from missed observations.
—Practical data-acquisition se�ings: To make our proposal practically e�ective, we consider several
realistic data-collection scenarios e.g. periodic, aperiodic or aggregated observations. Such scenarios
present additional challenges to modeling and learning the transient opinion dynamics. We present
experiments on several real data sets with these characteristics, based on Twi�er and Reddit. We
establish that our model o�ers signi�cantly be�er performance than other existing baselines.
A preliminary version of this work can be found in [11] that only discusses about the basic

version of the models excluding those of community level opinions and node features, and with
fewer datasets and experimental analysis.
Organization. �e following section provides a comprehensive review of the previous literature.
�e next three section provides the key technical expositions of this paper. More speci�cally,
Section 3 reports the two basic in�uencemodels for opinion dynamics– one considering independent
edge-weights, and another modeling the edge-weight as a function of the corresponding node
properties. Section 4 describes the variants of the models in various data acquisition scenarios.
In Section 5, we describe algorithms to estimate model parameters for di�erent variants of our
model. Section 7 describes the collection of real and in house datasets. Section � presentes the
evaluation metrics. Section 8 illustrates the experimental setup and the results. Finally in Section 9,
we conclude our paper.

2 RELATED WORK
While they are o�en used interchangeably, Merriam-Webster de�nes an opinion as “a conclusion
thought out yet open to dispute” and a sentiment as “a se�led opinion re�ective of one’s feelings”
[37]. In this work, we use the term ‘opinion’, in view of their dynamic nature.
Not all in�uence is propagated along social network edges; external events also impact agents.

However, Myers et al. [35] developed a detailed model for blending external and social in�uence,
and found that 71% of the information transfer volume (suitably characterized) in Twi�er can be
a�ributed to information di�usion across social links. Here we will focus exclusively on in�uence
conveyed by social links.
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Opinion Dynamics 99:5

2.1 Discrete opinion based approach
Discrete models assume that the opinions are discrete (binary or ordinal/quantized). �e voter
model [9] belongs to this category. At each step, a node is selected at random; this node chooses
one of its neighbors uniformly at random (including itself) and adopts that opinion as its own. �is
model always leads to consensus which is rare in many social scenarios. A modi�ed version of
the voter model is called label propagation [47] where the node adopts the majority opinion from
among its neighbors. However, these models always converge to consensus, irrespective of the
transient dynamics.
One way to overcome such a limited outcome is to incorporate stubborn agents [46]. Another

way [5] is to have each agent adopt its neighbors’ opinion, but depending on the similarity with
her own. �is model leads to polarization instead of consensus. �is was entirely a data driven
study with no rigorous analysis. A further unifying variation was analyzed by Lanchier [33]. In that
model, an agent adopts another agent’s opinion if those opinions are within a certain distance or
di�erence called the con�dence threshold. Lanchier showed that small (large) threshold values lead
to polarization (consensus) with high probability. Kempe et al. [29] brought forward the concept
of in�uence-selection whereby an agent is not only in�uenced by other agents which has similar
opinion but also selects for interaction agents who are similar to itself. �ey proved that such
behavior can stabilize over arbitrary graphs and precisely characterize the set of all stable equilibria.

Discrete opinions are a natural model for some applications, but not others. E.g., opinion about
world population at a future date, or the concentration of atmospheric CO2, or the number/fraction
of votes a politician might get, are all e�ectively continuous.

2.2 Continuous opinion based approach
Our present work is in the other regime of continuous opinions. Many models for continuous
opinion assume, like us, that neighbors in�uence linearly the opinion of an agent [16], reaching
limited consensus. Analysis is frequently grounded in the mathematics of matrix eigensystems,
Physics and theoretical Biology. �ey are based, for example, on bird �ocking models [24] and
Cellular Automata [26]. In the �ocking model, a node i (agent) with opinion xi �rst selects the
set of neighbors j having opinions xj so that |xi − xj | ≤ ε, and then updates its own opinion by
averaging them. A class of variants of Flocking models takes into account of random interactions
between users [15, 45]. �ese models have shown that �nal distribution of opinion values across the
networks strongly depends on the choice of the threshold. For example, high threshold values result
in opinion convergence around the initial average opinion, whereas low thresholds yield several
opinion clusters across the graphs. Moreover, these works have considered several variations of
Flocking models. Yet, they observed a similar clustering behavior for a large parameter space.
�ere is also a large body of work (see [7, 34] and references therein) that has sought to char-

acterize the convergence of bounded con�dence dynamics to either absolute consensus or some
clustering (polarization). But not all papers focus on convergence. Bindel et al. [6] state that in
many social se�ings consensus may never be a�ained. �ey characterize the cost of disagreements
in a game-theoretic se�ing. Of course, there are other occasions where only a discrete opinion
model will �t, and network averaging in the continuous sense is not meaningful [8]. Agents must
choose from a �xed discrete set of options. Various formulations of graphical games showed that
characterizing stability even for a two-strategy game is very di�cult.
We chose to address continuous opinions to retain some theoretical handle in the face of our

newly-introduced complications such as possible transience and asynchronous observations. How-
ever, there are some important distinctions with earlier work that may appear similar. DeGroot [16]
assumed a row-stochastic in�uence matrix with wij ≥ 0, and opinions in the range [0, 1] (which
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stochastic updates preserved). Another paper [4] aims to consider the e�ect of prior knowledge
of the users on one topic, over the dynamics of DeGroot model. DeMarzo et al. in the paper [17]
consider the e�ect of persuasion bias on opinion formation. �ey suggest that persuasion bias is
closely connected with social in�uence between two users. �erefore, the in�uence of one user
on another not only depends on the authenticity of the information she receives, but also the
connection she shares with others in the graph. In other words, they infer that the persuasion bias
of the users are not simply the traits of the users. Rather they are strongly correlated with the
network structure. A recent work [14] a�empts to combine the temporal dynamics of posts along
with opinion propagation. However, it does not consider many realistic scenarios, e.g. intermi�ent
observations or mesoscaled se�ing.
In our case, opinions can be unbounded, updates are not stochastic (in�uence can be negative,

and an agent’s combination rule is not convex), and zero is a special opinion value separating two
polarities of opinion.

2.3 Hybrid approach
A more recent paper [10] proposes a hybrid model, somewhere between discrete and continuous. It
proposes a biased voter model, which is a uni�cation of the voter model with �ocking. Each agent
is driven by a mix of three forces: stubbornness (ignoring others’ opinions), DeGroot’s permissive
averaging with neighbors, and biased conformance, which chooses in�uencing agents biased toward
those whose opinions are already somewhat close to that of the base agent. A preliminary data
study is used to justify the tension between these forces, and the resulting model is analyzed to
the following two ends. First, even if an individual agent changes opinion continually, the relative
population sizes of di�erent opinions converge. Second, consensus still happens under certain
conditions. �is paper is not concerned with in�uence estimation on individual edges, which is our
main goal.

2.4 Modeling influence in information propagation
Yet other works [30, 40] assume �xed topology and edge weights or propagation rules, and seek to
select an initial set of active (or ‘infected’) so as to maximize some kind of cascading e�ect to the
rest of the network. We do not seek to maximize in�uence; we observe a dynamic in�uence process
and estimate in�uence strength of all edges. A set of works analyze peer pressure and also external
in�uence in the context of information propagation [3, 39].

�e vast majority of the work discussed above assume some kind of �xed in�uence strength on
each edge. A notable exception [21], which, however, returns to the domain of some discrete action
on part of one agent, that precipitates the same action in another agent at some subsequent time.
Given the temporal ordering, in�uence propagation is acyclic, an assumption at odds with any kind
of reciprocal, continual in�uence. But this simpler setup allows them to estimate an edge parameter
pv,u from a form of so�-OR in�uence model at each node: pu(S) = 1−∏v∈S(1− pv,u), where S
is the set of neighbors of u that have already commi�ed the action, and pu(S) is compared to a
threshold to decide if u should also commit it. Another notable example of in�uence estimation
is by Shahrampour et al. [42], who provide a purely theoretical analysis of the online continuous
case, but do not deal with asynchronous observations, or validate on real data.

2.5 Modeling influence in other contexts
Apart from information di�usion, in�uence modeling has been extensively researched in Bayesian
network modeling [28, 36] and very recently in graph representation learning [20, 22, 25, 31, 41].
However, none of these works consider stream of networked data, and therefore cannot be applied
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Opinion Dynamics 99:7

in case of opinion propagation or information �ow. Moreover, the objective of in�uence modeling
in case of opinion dynamics is drastically di�erent from graph representation learning, where the
la�er aims to embed the entire graph into low dimensional vectors called “embeddings” as opposed
to opinion dynamics where the in�uence modulate opinion �ow over the network– an entirely
di�erent scenario.

3 MODEL FORMULATION
In this section, we introduce the two key in�uence models which will drive the subsequent opinion
models for di�erent data collection scenarios.
— Linear model with independent edge weights: A linear model with latent independent edge-weights
that re�ect �xed user-user in�uences in the network.
— Linear model with latent node labels: A linear model where edge in�uence weights (including
polarity) depend on latent a�ributes of the two connected nodes. �ese a�ributes may represent
user demographies, personalities or some other properties.

At the very outset, we model opinion as an arbitrary real number describing an agent’s opinion
or sentiment on an issue, real world event, product, etc. Our notion of opinion is more akin to
opinion mining or sentiment analysis (see e.g. Pang et al.[37]), where both polarity (+ve or −ve)
and magnitude are important. For example, on a recently-launched product, an opinion value of
+1, 0 and −1 could mean that the product is ‘good’, ‘neutral’, and ‘bad’‘ respectively, while an
opinion value of 1 is considered more positive than opinion value 0.1. We denote the opinion of
an agent i (i = 1, . . . , N ) at time instant k as xik ∈ R. Next we describe two opinion dynamics /
propagation models through time.

3.1 Linear propagation model with independent edge weights
Let G = (V,E) be a directed graph representing a social network. V is the set of vertices or nodes
representing agents who are forming and propagating opinions (|V | = N ). We assume opinion
values of agents evolve as a linear function of their own and their neighbors’ previous opinions;
i.e., at time k + 1, we have xik+1 =

∑N
j=1Ai,jx

j
k, ∀k = 1 . . .K . Ai,j represents the stationary

weight or intensity with which, agent j’s opinion xjk at time k in�uences the formation of agent
i’s opinion at time (k + 1). Further, node j cannot in�uence node i if they are not connected:
(i, j) 6∈ E =⇒ Ai,j = 0. Also, Ai,i represents the weight with which agent i in�uences itself (a
measure of stubbornness). �us, A can be thought as a weighted adjacency matrix of the graph G
with all self loops present. Let xk = [x1k, . . . , x

N
k ]T denote the vector of all opinions at time k. We

have the following equation representing the opinion dynamics:

xk+1 = Axk (1)

Note that for (i, j) ∈ E, Ai,j can be either positive or negative. A negative Ai,j implies that agent
i does get in�uenced by j’s opinion, but to the opposite polarity. As a common example from real
life, person i may know that her taste in colors is the opposite of person j. Hence, person j liking
a new paint may negatively in�uence person i’s opinion about it. �is e�ect is not possible in
DeGroot’s model [16], since Ai,js are restricted to be positive and sum to 1. On the other hand, this
assumption keeps the opinions predicted by DeGroot’s model at time k + 1 in the same range as
the opinions in time k. �e opinions predicted by the model proposed above are not thus bounded.
However, it is easy to check that:

‖xk+1‖ ≤ ‖A‖‖xk‖ ≤
√
λmax(ATA)‖xk‖
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where, λmax(ATA) is the largest eigenvalue of ATA. Hence,
√
λmax(ATA) imposes a dynamic

bound for the single round of update.
Another aspect of our study is that we focus on short-term or bounded-horizon opinion dynamics,

as opposed to asymptotic behavior of opinion dynamics models. �erefore, we can allow the use of
models for which

√
λmax(ATA) 6= 1. In the familiar asymptotic scenario,

√
λmax(ATA) > 1

leads to the unbounded opinions as k →∞, while all opinions shrink to 0 if
√
λmax(ATA) < 1.

�e focus on short term dynamics is fueled by the thought that Aij , the in�uence of a person j on
a person i, changes with time. In the experiments, we try to predict the opinions of (k + 1)th time
point using opinions of previous k time points.

3.2 Linear propagation model with latent node types (SBLM)
�e aforesaid linear model tries to learn in�uences for each edge inG, which represents a large num-
ber of parameters (up to O(N2)) and degrees of freedom. �is entails not only high computational
complexity, but also lack of interpretability and potential over��ing.
In this section, we propose a model with a fewer number of parameters, which are potentially

more interpretable. We assume that nodes are naturally clustered into groups. For example, in
case of opinion exchange on a technical or knowledge-based topic, there may be experts and non-
experts, whereas, for a political topic, there may be le�ists or rightists, and so on. In our models,
we conceptualize these node properties as representing cluster labels in the underlying network.
In the above example, we can think political ideology (le�ists and rightists) as the clustering
node-property. Let there be C labels (node-properties), {1, . . . , C}, one corresponding to each
cluster. Also, let zi ∈ {1, . . . , C} be the random variable denoting the cluster label of the ith agent,
i = 1, . . . , N . Note that zi is usually a latent entity. Let θi ∈ [0, 1]C be a probability vector with
its element θi(j) being the chance that node i belongs to cluster j. �at is, θi(j) = P (zi = j).
Hence,

∑C
j=1 θi(j) = 1. In other words, we assume a time-invariant probabilistic model for cluster

membership: zi follows a multinomial distribution with parameters θi.
Further, we can assume that agents belonging to a group display similar behavior towards the

phenomenon of opinion propagation. For example, all experts have similar in�uence on other
experts or non-experts. Let Bl1,l2 ∈ R, 1 ≤ l1, l2 ≤ C denote the in�uence of a member of
the lth1 cluster on a member of the lth2 cluster. �e random in�uence of jth agent on ith agent is
given by Aij |(zi, zj) ∼ D(ξξξTziBξξξzj ), where D is a pre-speci�ed distribution and ξξξz is the one-hot
representation of the cluster label. Since E(ξξξzi) = θi, one may write Aij ∼ Ezi,zj [D(ξξξTziBξξξzj )].
Finally, an opinion stream xk, k = 1, . . . ,K is generated as xk+1 ∼ N (Axk, σ

2). Hence, the �nal
generative model is wri�en as:

zi|θi ∼ Multinomial(θi) ∀i = 1, . . . , N (2)
Aij |(zi, zj) ∼ D(ξξξTziBξξξzj ) ∀i, j = 1, . . . , N (3)

xk+1 ∼ N (Axk, σ
2) ∀k = 1, . . . ,K (4)

In practice, θi, the apriori cluster-membership probability vector is not known.�erefore, following
the traditional approaches to stochastic block modeling [1], we assume that θi ∼ Dir(α) for all
i ∈ V with α being the concentration parameter-vector of a Dirichlet distribution. It is interesting
to note that if D(µ) is a normal distribution with mean µ, then E(Aij) = θTi Bθj . However, for
other distribution we estimate the expected edge-in�uence by taking average over a large number of
simulated values. Such amodel for generation of cluster in�uences is inspired bymixed-membership
or weighted stochastic block models [1] introduced recently. Hence, we call this the stochastic
block linear model (SBLM). In Section 5, we will describe algorithms for estimating parameters
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Opinion Dynamics 99:9

B and θi, i = 1, . . . , N . �e number of parameters isO(CN +C2), which is much less than linear
model (O(N2)) described in the previous section.

4 DATA ACQUISITION SCENARIOS
�e models proposed above are speci�ed by the set of parameters: Ai,j : i, j ∈ {1, . . . , N} for
the linear model with independent edge-weighting, and Bu,v : u, v ∈ {1, . . . , C} with θi : i ∈
{1, . . . , N} for linear model with latent node type SBLM. Usually, there can be no direct observation
of these parameters in a real social network. However, it is possible to obtain the opinions of various
agents xik at di�erent time instants (see Section 6). In our application, agents express their opinion
continually via posts, which can take the form of ratings, tweets, or comments. Textual posts can
be converted into numeric opinion via sentiment analysis [37]. We use the dynamics of these
opinions to estimate the parameters. �us, the problem of automatically learning the parameters
A,B, and θi, given the observed xiks, is critical. In this section, we explore various scenarios in
which opinion data can be acquired. Figure 1 shows an illustrative explanation of the three data
collection scenarios, viz., full, periodic and aperiodic data acquisitions. Before describing them, we
�rst describe one hypothetical data collection scenario, called omniscient data observation in the
following.
Omniscient observations. Note that, as described in Figure 1, with each of these data collection
regimes, we associate a data collection scenario called omniscient data collection–where posts
from all the users together are available in each time-step. However, this is an extremely ideal
situation–since, in practice, the messages are posted asynchronously, and at each time-step, only
one message is available.
Translating the observed data into omniscient-like stream.Our basic dynamical model (Eq. 1)
also operates similarly, since it updates the opinions of all the users together in each timestep.
Hence, to make our model operable and trainable for the observed dataset, it is necessary to translate
the observed data into the omniscient-like stream. �erefore, it is crucial to assign opinions of all
the users in each timestep even if the some of the opinions are not observed in the collected data.
To that aim, we assign the opinion xuk of user u at time k as the last opinion she posted a user, if she
has not posted at time k. More speci�cally, our basic opinion model can be described as following.
In general, the opinions are posted asynchronously, i.e., at time k, one agent j may post his

opinion, whereas another agent i may not. Let S be the set of all time instants when some agent
has posted his opinion. Moreover, let Si = {k|xik exists} ⊆ S, ∀i = 1, . . . , N , be the set of all time
instants when agent i has expressed an opinion. Also, let xik−, be the last posted opinion by an
agent i before and excluding time k.

xik = Ai,ix
i
k− +

∑
j∈N (i)

Ai,jx
j
k− = AT

i xk− , ∀k ∈ Si and 1 ≤ i ≤ |V |

=⇒ yk+1 = Ayk (5)

whereN (i) is the set of neighboring vertices of i,AT
i is the i-th row vector of matrixA, and yk is

de�ned as follows.

yik =

{
xik if k ∈ Si
xik− if k /∈ Si

In the following, we describe the actual data collection scenarios. For each of these cases, we
suitably translate the observed data as well as the underlying model as described above. From now
on, we describe yk as the observed opinion during kth time-step in the data.
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99:10 De et al.

4.1 Full observations
Here, we assume that all the posts that are made on the timeline of the users are available. �is is
an ideal situation, when an exact and exhaustive set of opinions posted is available over time.

Crawler does not miss data at all. Each post made on any user’s timeline is present in the
collected data.

It is a rare scenario in practice, but a potentially useful baseline on which to evaluate any in�uence
estimation model. �erefore we conducted three in-house social in�uence games where users were
connected in a small network to exchange their views on some controversial topics. �e datasets
collected from these in-house systems o�er access to all the posts of the users, providing the most
favorable scenario in which we can evaluate a proposed system. For such system, the e�ective
dynamics is same as Eq. (5).

4.2 Periodic observations
�e full observation se�ing described above, despite being simple and elegant, is practically di�cult
to achieve. For example, Twi�er witnesses over 500 million tweets per day1. A crawler can collect
only 1% sample from Twi�er. Only a few posts of each user are likely to be collected within this
budget. �e ones collected are likely to skip irregular numbers of other posts. In this section, we
assume that the data collector omits data in regular (equal) intervals.

Crawler misses data at regular (equal) intervals. Between two consecutive readings in the
data, we miss t posts, where t is constant throughout the timeline.

�at said, in this model, we assume that the crawler misses posts with a constant frequency, say
t per time window between any two consecutive posts made in k and k + 12. �is means that,
between two observed time-stamps opinion propagated t times across various users in the network.
�us, using simple calculations, we can write the propagation model as:

yk+1 = Atyk ∀k = 1, . . . ,K (6)

Here, At is the in�uence matrix A, de�ned previously, raised to the t-th power. We refer to this
model as the periodic linear model (PLM). As is well known, Atij aggregates over all paths of
length t between nodes i and j.

4.3 Aperiodic observervations
In PLM, we assumed a constant period, t (equivalent to the maximum number of messages missed
between two consecutive time-stamps), for all consecutive time steps. However, human activities
happen in bursts. For example, people post more messages on social network during the day, than
at night. Hence, it is expected that number of missing messages posted during daytime would be
more than at night.

Crawler misses data at irregular intervals. Between two consecutive timesteps (k and k+1),
a non-constant number tk messages are missing in general.

1h�p://www.telegraph.co.uk/technology/twi�er/9945505/Twi�er-in-numbers.html
2�e corresponding time-window can be de�ne as (k, k + 1).
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Opinion Dynamics 99:11

(a) Sample network

x
k
→

1 2 3 4 5 6
k →

Extrapolated

x
k
→

1 2 3 4 5 6
k →

Extrapolated

(b) Full-omniscient (c) Full-observations (with extrapolation)

x
k
→

1 2 3 4 5 6
k →

y k
→

1 2 3 4 5 6
k →

Extrapolated

(d) Periodic-omniscient (e) Periodic-observations (with extrapolation)

x
k
→

1 2 3 4 5 6
k →

y k
→

1 2 3 4 5 6
k →

Extrapolated

Extrapolated

(f) Aperiodic-omniscient (g) Aperiodic-observations (with extrapolation)

Fig. 1. Illustration of various data acquisition scenarios. Panel (a) shows a hypothetical network of users for
which opinions are shown in figures (b) to (g). The users are color coded, and the color of the bars in (b) through
(g) correspond to the color coding of the users. Panels (b), (d) and (f) show omniscient timelines, that is the
hypothetical case, where we would know the opinion of every user at every time step. However, since that is not
possible, we translate real observations, where opinions of only a subset of users is available for a subset of time
steps, into an omniscient-like stream, by extrapolating from previous opinions, that we call actual timelines. This is
shown in Panels (c), (e), and (g). Without loss of generality, suppose, at each time-stamp, only one user posts
her opinion. If a user has not posted, but one of her neighbors have posted, in a given timestep, then her opinion
is taken to be the same as her last observed opinion. Panels (b) and (c) show data for full observations where
all posts that are made by all users are available. Panels (d) and (e) consider data for the periodic case, which
indicate that between any two consecutive observations, two posts are missed. Panels (f) and (g) consider data
for the aperiodic case, where the number of missing observations between two consecutive observed messages
varies across time.
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In aperiodic linear model (ALM), we assume that the number of missing posts between two
consecutive time-windows varies from one time window to another. As before, let yk denote
the opinion vector for all agents at time k. Let tk, k = 1, . . . ,K be the number of times opinion
propagates during kth time-window. �e opinion dynamics is then given by:

yk+1 = Atkyk,∀k = 1, . . . ,K (7)

Note that the model is characterized by parameters tk, k = 1, . . . ,K , in addition to the weighted
adjacency matrix parameters A. �e set of parameters TK = {tk|k = 1, · · · ,K} is called the skip
set, with tk denoting the number of iterations, which has been “skipped” at kth time-window. We
denote the above model as aperiodic linear model (ALM).

4.4 Mesoscaled data acquisition
In Physics andMeteorology,mesoscale ormesoscopic analysis refers to an intermediate scale between
the �nest (microscopic) and coarsest (macroscopic) observable levels of analysis or observation.
In many real-life scenarios about opinion dynamics, �ne-grained per-node opinion data may not
be feasible or pro�table to acquire. For example, it is expensive to collect individual ratings for
a particular movie from everyone exiting a theater, or individual political sentiments from exit
polls at elections. Instead, it may be easier to acquire an aggregated or average opinion for a
group or community c of people, e.g., box-o�ce estimate in one movie theater, or sampled political
sentiments of people in a polling booth. Aggregated observations may also be regarded as protecting
the privacy of individuals.
In this scenario, opinion evolves under the usual se�ing as described in Equation (1). However,

the individual node opinions are not accessible. Instead, one can only observe the mesoscaled
community level opinions x̄ck , where x̄ck is the average of sentiments of all nodes in community c
at time-stamp k.

5 MODEL PARAMETER ESTIMATION
Our �nal step is to estimate the parameters in models described in Section 3 from data acquired in
scenarios described in Section 4. Here we describe formulations and algorithms for model parameter
estimation in the most common or important scenarios. Note that, it is not known apriori if the
collected data complies with periodic and aperiodic observations, as well as the corresponding
number of missing updates. �erefore, we obtain the number of missing opinions per time-window
(t for periodic and tks for aperiodic) using cross-validation. Hence, the time-intervals obtained
via grid search refers to the estimate of the unobserved variable: number of events that occured
between any two observed events. �is cannot be directly estimated from the crawl schedule.

5.1 Estimation from full observartions via regularized least squares (RLS)
Our objective is to estimate the matrix A from opinions acquired using the asynchronous scenario
(Section 4.1). Let D = {xik|k ∈ Si, i ∈ V } be a dataset of all opinions posted by all agents in V .
We assume that agent i forms its opinion at time k ∈ Si based on previously posted opinions
of its neighbors. �en, the loss incurred in predicting all observations by agent i is given by∑
k∈Si

||xik−AT
i xk−||2. Adding anL2 regularizer, λ||Ai||2, we can estimate the optimal parameter

A∗i by solving the following problem:

min
Ai

∑
k∈Si

||xik −AT
i xk−||2 + λ||Ai||2 (8)

s.t. Ai,j = 0 whenever (i, j) 6∈ E and i 6= j
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Opinion Dynamics 99:13

Here, λ is the user de�ned regularization parameter and Ai,j is the jth entry of vector Ai. By
solving |V | such optimization problems (one for each i), we can obtain A∗i , the optimal value of
Ai, for all i = {1, . . . , N}, and thus estimate the entire optimal A matrix A∗.

Let x̃ik− = Uijxk−,∀k ∈ Si, where Uij is a N × N diagonal matrix such that Uij(j, j) =

1 if (i, j) ∈ E. Also, let Xi = [x̃ik−|k ∈ Si]
T be a |Si| × N matrix with rows as x̃Tk−, and

x̄i = [xik|k ∈ Si]
T is a |Si| × 1 column vector. �e above problem is same as solving A∗i =

argminAi
(‖x̄i −XiAi‖2 + λ‖Ai‖2). It is easy to check that this problem is solved when:

A∗i = ((Xi)TXi + λI)−1(Xi)T x̃i (9)
Increasing λ decreases ‖A∗‖F , which can be thought of as a measure of complexity of the model
[43]. Here, ||A∗||F =

√
Trace(A∗TA∗) is the Frobenius norm of A∗.

5.2 Periodic estimation
Following the assumptions laid out earlier in this section, we can write the regularized loss function
for learning A, in case of periodic opinion propagation (Section 4.2) as L(A) =

∑K
k=1 ‖yk+1 −

Atyk‖2 + λ‖At‖2. �e best estimate of A can be obtained by minimizing L(A). Unfortunately,
L(A) is not convex in A. Hence, the minimization can get stuck in local minimum. Also, we note
that for most prediction tasks, we only need to estimate Mt = At, since we only observe opinions
yk which are propagated with the constant frequency of t per time window. Let Gt = (V,Et)
be the graph generated by including all t-hop connections in the set of edges Et. It is clear that
Mt(i, j) = 0 if (i, j) 6∈ Et. We can learn the optimal M∗

t by solving:

min
Mt

K∑
k=1

‖yk+1 −Mtyk‖2 + λ‖Mt‖2 (10)

s.t. Mt(i, j) = 0, whenever (i, j) 6∈ Et

One way of obtaining A∗ from M∗
t is to calculate A∗ = (M∗

t )
1/t using a root-�nding algo-

rithm [27].

5.3 Aperiodic estimation
Given a set of opinions, yk, k = 1, . . . ,K and a skip-set tk, k = 1, . . . ,K , analogous to previous
discussion, we can write the following optimization problem for learning the weighted adjacency
matrix parameter using the squared error as:

min
A

K∑
k=1

||yk+1 −Atkyk||2 + λ‖A‖2F (11)

s.t: Ai,j = 0 whenever (i, j) 6∈ E and i 6= j

�e above problem is also a non-convex optimization problem. However, since the feasible set is
convex, we can �nd a local optimum for the above problem using the projected gradient descent
method. Let YK = {yk|k = 1, · · · ,K} be the set of all opinions. Let f(A;YK , TK) =

∑
i ||yk+1−

Atkyk||2 +λ‖A‖2F . �e gradient of f(A) w.r.t. A can be wri�en as

∇Af(A;YK , TK) =
∑
i

tk
[
− 2Atk−1yky

T
k+1 + yky

T
k (Atk)TAtk−1

+Atk−1yky
T
k (Atk)T

]
+ 2λA. (12)

�e projected gradient descent algorithm for �nding optimal A is described in Algorithm 1. Here,
the gradient matrix ∇Af(A;YK , TK) is evaluated using expression in Equation 12. �e projection
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step Π(A,E) ensures that resultingA is projected back to the feasible set, i.e.,Aij = 0 if (i, j) 6∈ E.
While in general the algorithm is not guaranteed to converge to the global optimum, in practice it
converges quickly to a local optimum.

ALGORITHM 1: Learning A using projected gradient descent.
Data: G = (V,E).
Input :Opinion-vectors YK , skip-sets TK , initial A0, convergence threshold ε, edge set E
Output :Weighted-adjacency matrix A
initialize: A← γA0

while (||∇Af(A;YK , TK)|| ≥ ε) do
A← A− s∇Af(A;YK , TK);
A← Π(A,E)

end
Return A

Note that here we assume the skip set TK to be given. In practice, we can restrict each tk to take
values from a set {1, · · · , tmax}, which can be optimized using cross-validation.

5.4 Parameter estimation with mesoscaled data (MLearn)
Let S be the set of all time instants when the mesoscaled opinions are observable. Let the input
graph be G(V,E), the set of communities be C, community-level mesoscaled opinions be x̄ck with
c ∈ C and k ∈ S. Our task in this case is to estimate the edge weight matrix A. We cast this
problem as the following optimization problem.

min
A

∑
i∈V

∑
k∈S

||xik −AT
i xk−1||2 + λ||Ai||2

s.t. Ai,j = 0 whenever (i, j) 6∈ E and i 6= j.

Here, given any c ∈ C, xik = x̄ck for all i ∈ c, k ∈ S. We call this framework as MLearn.

5.5 Stochastic block model estimation with node types
Let yk, k = 1, . . . ,K be the opinions acquired in a periodic/aperiodic data collection se�ing. Here
we a�empt to learn the edge in�uence and cluster memberships from these temporal data, which
are assumed to be generated following the generative model described in Section 3.2.
Recall that the cluster membership probability vector θi for each node i ∈ V is drawn from

Dir(α). (α is the concentration parameter vector for the Dirchlet cluster distribution.) �e cluster
membership indicator vector is ξξξzi for each node i with cluster-label zi. �e edge in�uence from i
to j is Ai,j . �e block interaction matrix isB.
Given opinion data y[1 : K], our task is to infer all these unknown parameters θ[1 : N ], z[1 :

N ], A. Note that, onlyB and α are independent parameters; other variables are all latent. �e
proposed model is a variant of stochastic block model. However, unlike in existing work [1], our
se�ing does not o�er access to edge-in�uence values directly. Instead, we observe only a stream of
temporal data, generated linearly from previous opinions using the hidden edge in�uences. Hence,
the existing inference techniques for stochastic block model cannot be directly applied here.

To estimate the parameters Λ = {θ, A, z}, �rst we compute the likelihood of the opinion stream.
Combining the opinion model with the other sources of stochasticity, we write the joint model for
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Opinion Dynamics 99:15

opinions and graph parameters as:

Pr((yk)Kk=1,Λ|α,B)

∝ Pr((yk)Kk=1|A) Pr(A|(zv)v∈V ;B) Pr((zv)v∈V ,θ|α)

= exp

[
−∑K

k=1 ||yk+1 −Atkyk||2
σ2

] ∏
(u,v)∈E

D(ξξξTzuBξξξzv )
∏

u,c∈V×[1:C]

θu(c)
ξξξzu (c)

Dir(θ|α)

(13)

�ere are lot of techniques to solve graphical models and their variants, and we appeal to variatioanl
inference (directly adopted using [1]). Choosing di�erent forms forD, e.g., normal, exponential, and
pareto distributions, we estimate Aij , which in turn is used to predict the opinion in the next-time
stamp (Section 8). In the next section, we describe the dataset construction and metrics used.

Dataset # Nodes # Edges # Messages Max messages./Node Min messages./Node
Continents: Europe vs. North America 102 1,020 2,182 52 6
Colleges: IIT3 Delhi vs. IIT Bombay 102 1,020 1,758 40 3
Occupation: Startup vs. Job 102 1,020 1,439 33 4
Twi�er: Delhi elections 548 5,271 20026 102 20
Twi�er: Movie 457 4886 14016 236 21
Twi�er: Series 947 10253 13203 291 20
Twi�er: Fight 848 10118 21526 402 21
Twi�er: Bollywood 1031 34952 46845 867 22
Reddit (politics network) 556 94,312 64366 2,571 20

Table 1. Summary of the nine datasets used for experimental validation. The first three correspond to
the topics used for in-house controlled experiments on human subjects. The last six correspond to
real world datasets obtained from Twitter and Reddit.

6 DATASETS
We use nine diverse datasets to evaluate our algorithm. For each, we require the network topology,
and the opinion values of the users over a period of time. �e datasets, summarized in Table 1, can
be placed in two groups. �e �rst three are generated by us, in-house, through carefully controlled
and monitored social in�uence processes. �e last six are derived from Twi�er and Reddit forums,
provided as-is. �e distinction is that in the �rst three cases, we are able to read opinion values at
the time granularity of our choice, so as not to miss any updates; whereas for the last six, we have
no such control. �e �rst three cases provide us with valuable insights, as in these cases we were
able to capture all visible opinion values, while also minimizing the in�uence of external sources.

6.1 Controlled social experiments
�e set of agents in our controlled experiments consists of a class of 102 students in a course
on Information Retrieval taught in the Department of Computer Science and Engineering, Indian
Institute of Technology Kharagpur. �e experiments were performed in a laboratory se�ing, where
each student sat in front of a desktop computer and interacted with ten other randomly assigned
students (designated social neighbors) through aWeb interface (as shown in Figure 2) for a period of
three hours. (In order to maintain both connectivity as well as randomness of the social graph with
a modest number of nodes, a realistic degree distribution like power-law could not be considered.)

On each topic, the agents re�ned their opinions continually by communicating with their graph
neighbors using the text box. To avoid externalities, participants were not allowed to access the
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Fig. 2. Web interface for opinion posting for the controlled experiment.

Web, or discuss anything with each other verbally. All communication through the interface was
recorded. Social neighbors were kept anonymous, so that the agents did not get biased by the
real-life identity of another agent.

In order to collect one dataset, we started by broadcasting to agents a topic, posed in the form of a
comparison between two entities.�e three topics given to the students involved these comparisons:

Continents: �e be�er place to live: Europe vs. North America.
Colleges: �e be�er college to a�end: IIT Delhi vs. IIT Bombay.
Occupation: �e more preferable occupation: startup vs. a regular job.

�ese topics were chosen since most agents did not have a strong prior opinion, but had some
knowledge about the subjects. �is was done to ensure that at least some of the agents would
show changes in their opinions during the experiment. Every time an agent posted a message, the
interface automatically reported the current opinion value, which was modeled as a real number in
the range [−1, 1]. �e sign represents polarity of the opinion (e.g., if joining a startup is preferred,
then the opinion score assigned tends to −1, while the reverse is true for the other choice), and the
magnitude represents the degree of conviction. Only the message from an agent, and not his/her
current quantitative opinion, was shown to neighboring agents. Agents were asked to make opinion
messages self-contained. Every experiment proceeded for one hour, a�er which the experiment
was terminated. At the end of a live experiment, we obtained one dataset, containing all visible
timestamped opinions of every agent.

6.2 Twitter datasets
Via hashtags, we chose �ve controversial Twi�er topics (an election, a movie, a TV series, a boxing
match, and a celebrity hit-and-run case) and crawled related tweets during a period of intense
activity. �is provided us with a very good opportunity to measure the performance of our system.

6.2.1 The Network. For each topic, we �ltered the candidate set of agents in three steps. We
started with around a million tweets. In order to remove corporate accounts, bot accounts, and
spammers, we �ltered the set of users based on the number of followees, number of followers, and
the number of tweets posted by the user. We only preserved those users who had between 100 and
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10,000 friends, between 50 and 1,000 followers, and between 200 and 10,000 tweets posted during
the account’s lifetime. �is resulted in a set of a good number of users who are active on Twi�er
and also enthusiastic about the topic. For these users, we collected, using the Twi�er REST API,
the user IDs of all their followees, followers, and up to ∼3K most recent tweets. We only collected
tweets posted during the week of occurrence of the concerned event. With the information about
both the followees and followers of the pre-selected users, we were able to create the complete
follower-followee network. Finally, from these users, we selected the largest strongly connected
component such that each selected user posted over 20 tweets. �e network thus generated is
a�erwards used to test our system.

6.2.2 Opinion values. Since tweets are limited to only 140 characters, we accumulated the
tweets posted by every user during a single hour, and generated a document. Each document
was turned into an opinion score. ‘Opinion’ here connotes a positive or negative a�itude to the
particular issue/event, which was detected by subjecting these hourly documents to a sentiment
analysis tool speci�cally designed for Twi�er [23]. �e method relies on scoring tokens based on
their co-occurrence with positive emoticons such as smiley “:)” or negative emoticon or frowny
face “:(”. Prior work has shown the e�cacy of using emoticons [18] for sentiment detection. For
example, if in our dataset, we �nd the word ‘love’ to co-occur in x tweets containing the smiley
“:)” and to co-occur with y tweets containing the frowny face “:(”, the sentiment score given to
the word ‘love’ according to the algorithm is equal to x/(x+ y). �is gives the relative propensity
of the token to be used in a positive content. To get a clean set of scored sentiment tokens, we
only used tweets that were wri�en in English, and only considered tokens that occurred at least
20 times in our dataset. For every document we �nally obtained a single sentiment score in the
range [−1, 1]. �e score represents the relative proportions of words with positive and negative
connotations.

6.2.3 Collected Twitter Data. We gathered the following Twi�er datasets for testing our
proposals. �e details of the datasets are given here and also summarized in Table 1.
• Delhi Elections 2013 (Tw:Politics). �e Delhi Legislative Assembly elections of 2013 was a
keenly contested event with three major parties (two old parties, BJP and Congress, and one
newly formed party, AAP) winning roughly equal vote share. For testing our system, we used the
Twi�er search API to collect tweets containing the following hashtags: #BJP, #AAP, #Congress,
and #Polls2013. �e �rst three represented the hashtags for the three major parties competing
in the elections, while the fourth was the most popular hashtag corresponding to the event. We
gathered tweets during the period of 9th to 15th December 2013. �is period corresponds to the
week following the declaration of results on 8th December 2013. �e obtained dataset has around
20K posts and a connected graph having 548 users and 5.2K edges.
• Release of “Avengers: Age of Ultron” (Tw:Movie).�is superhero movie was released in the
�rst week of May 2015. We considered the following hashtags: #Ultron, #marvel, #avengers, and
collected the tweets during the period of 28 April to 5 May 2015. �e resulting network has 487
users and 4.8K edges and around 14K tweets. One important aspect of this dataset is that all the
collected users have positive opinion in all the posts.
• Season 6 of “�e Game of �rones” (Tw:Series).�e sixth season of this American thriller-
drama was �rst aired on April 12, 2015. We collected the tweets with hashtags #GOT and #game-
o�hrones during the period of April 8 to 15, 2015 that resulted in more that 21K posts and a network
of 947 users and 10k edges.
• Boxing match between Floyd Mayweather, Jr. and Manny Pacquiao (Tw:Boxing). �is
boxing match was a much-hyped event o�en billed as “�e Fight of the Century”. �is event took
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place on May 2, 2015. It triggered a huge discussion in Twi�er. We gathered the related tweets
from 29 April to 7 May 2015 that led a rich collection of 21K messages and a network of 848 users
and 10K edges.
• Bollywood actor hit-and-run case verdict (Tw:Bollywood).�is controversial event is the
�nal hearing on the hit-and-run incident by Salman Khan, a popular Bollywood actor. �is event
triggered an intense war-of-words among many users, some openly supporting Khan. We collected
the tweets with the related hashtags: #Salman, #HitAndRun etc., during the period of 7 May to 16
May 2015. Finally, we obtained a corpus of 20K tweets with a network having ∼ 1K nodes and ∼
46K edges.

6.3 Reddit Politics Data
Reddit is a social post curation website, where users submit content in the form of text posts or
links to websites with the content. More than 6% of online adult users use Reddit4. Content in
Reddit is categorized by areas of interest called ‘subreddits’. Reddit boasts over seven thousand
active subreddits5 on topics as varied as music, politics, sports, world news, programming, etc.

We collected data of Reddit users who posted content in the subreddit ‘politics’ during the period
of July 1 to December 31, 2012. We crawled all posts made by Reddit users during the above period
in the subreddit politics. We obtained 120K posts made by 31K users.

6.3.1 The Network. �e social network in Reddit is not explicit. We applied certain heuristics
to recover an approximate user network. We created an undirected network taking 31K users as
vertices, and assumed the existence of an edge between two users if there existed two subreddits
(other than politics) where both posted during the given time period.

Similar to the case of the Twi�er data, we randomly selected approximately 500 users such that
the users have made more than 20 submissions during the given period and the network between
them formed a single connected component. We ended up selecting a subnet of 556 users for the
subsequent experiments.

6.3.2 Opinion Values. Most of the posts made by users of Reddit were in well formed English.
�us, we used the standard linguistic analysis tool LIWC [38] to analyze sentiment scores from
them. We computed the sentiment of a post as the di�erence between the positive emotion score
and the negative emotion score, as returned by LIWC. �e results were normalized by mapping the
range of values obtained to the range [−1, 1] using linear scaling.

7 EVALUATION METRICS
In this paper, we adopt a data driven approach to opinion modeling. To this end, we assume that we
have access to actual opinions (ground truth) expressed by people interacting on the social network
(see Section 6). We estimate edge-in�uences (Section 5) under diverse se�ings, which are then used
to predict future opinions. We evaluate the utility of our proposal by measuring the deviation of
the predicted opinion from actual opinion. If yk ∈ R|V |×1 is the opinion vector expressed by users
at timepoints k = 1, . . . ,K , the predicted opinion vector

ŷk+1 =


Âyk if models is FLM
Âytk if models is PLM
Âytkk if models is ALM

4http://pewinternet.org/Reports/2013/reddit.aspx
5http://www.reddit.com/about/, as on June 7, 2014.
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7.1 Normalized error
For real opinions, a natural measure of error is the squared error of the predicted opinion with
respect to the observed opinion. �us, error, ek = |yk − ŷk|. Hence, the root mean square error
(RMSE) for all nodes at time k + 1 is:

E =

√
eTk ek
N

However, this error metric is sensitive to the scale of the input data. Hence, we use the normalized
error metric:

NRMSE =
E

(ymax − ymin)
(14)

where, ymax = max(xik), ∀(i)Ni=1 & ∀(k)Kk=1, and ymin = min(xik), ∀(i)Ni=1 & ∀(k)Kk=1, are the
maximum and minimum values of all observed opinions, respectively.

7.2 Quantized error
Another metric which captures the polarity of the opinions is the quantized error. We de�ne this as
the fraction of times, the polarity of the predicted opinion matches the observed one. �us, the
quantized error at time instant k + 1 is given by:

QError =
1

N

N∑
i=1

1
[
yik+1ŷ

i
k+1 < 0

]
(15)

where 1(·) is the indicator function. �e product yik+1ŷ
i
k+1 is positive only if yik+1 and ŷik+1 have

the same sign.

7.3 Relative improvement factor
Apart from the above two metrics, we also use improvement factor (IF) metric as a performance
indicator for opinion model with node classi�cation. Formally, this is de�ned as,

IF =
NRMSEnode-classi�cation − NRMSEindividual-edge-weighting

ymax − ymin
7.4 ∆NRMSE and ∆QError: Metrics used in mesoscaling
To evaluate the utility of our mesoscaling model estimators, we �rst compute the errors (normalized
RMSE and quantized error) for the community-level opinions and then report improvement of
these metrics w.r.t. the same in the individual node levels. More formally, to obtain the error at
time k + 1 we compute the following:

Comm-NRMSE =

√
1

|C|
∑
c∈C

1

|c|2
[∑
i∈c

(yik+1 − ŷik+1)
]2

Comm-QError =
1

|C|
∑
c∈C

1

|c|
∑
i∈c

[
1(yik+1ŷ

i
k+1 < 0)

]
�en we report,

∆Metric = − 1

|C|
∑
c∈C

Comm-Metric[c]− Node-Metric[c]
Node-Metric[c]

Here, Metric is either NMRSE or QError, Node-Metrics are NRMSE or QError computed over the
speci�ed nodes, and Comm-Metrics are NRMSE or QError computed at the community level.
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8 RESULTS
In this section, we establish that our proposed models are superior to competitive prior approaches.
We report experimental results across all nine datasets — three datasets generated from in-house
debate games and six datasets obtained by crawling Twi�er and Reddit. For the �rst three datasets,
the background process is modeled using the asynchronous full observation system, as all the
opinions of every participant are captured in the dataset. For the other six datasets, we model
the background process using periodic, aperiodic, and SBLM variants of our models. To be�er
understand the performance of our models with respect to the existing state-of-the-art techniques,
we consider four baseline opinion propagations models: Voter model [9], Biased Voter model [10],
Flocking model [10, 24], and DeGroot’s model [16]. To the best of our knowledge, this is the �rst
work reporting a data driven comparison of opinion exchange models using real-world datasets.

8.1 Baselines
We compare our results with four popular state-of-the-art baseline models.
Voter Model [9]: In this strategy, at each step, �rst a node within the network is selected at
random; next one of its neighbors is choosen uniformly at random (including itself) and then, the
original adopts the chosen node’s opinion as its own.
Biased Voter Model [10]: �e Biased Voter Model introduces a bias over the Voter model, where
the bias being that a user is most in�uenced by the neighbor whose opinion is closest to its opinion.
Flocking Model [24]: In the �ocking model, a node i with opinion xi �rst selects the set of
neighbors j having opinions xj so that |xi − xj | < ε and then updates its own opinion by
averaging the opinions of the selected neighbors.
DeGroot’s Model [16]: DeGroot’s model assumes that a node within the network updates its
opinion by taking a weighted average of its neighbors’ opinion. In particular, this proposal assumes
that the array of weights form a row-stochastic in�uence matrix with wi,j ≥ 0, and opinions in
the range [0, 1] (which stochastic updates preserve).

8.2 Performance comparison
For each approach, we learn the parameters that is best able to explain the data. Note that although
we know how regularly we are sending crawling request to a search API, we do not know how
regularly the tweets are missed in the collected data thus obtained. So e�ectively, it is not known
apriori if a periodic or aperiodic strategy best complies with the collected data. Consequently, we
consider all the models driven by di�erent data collection mechanism (FLM/ALM/PLM) as well as
in�uence types (Edge-weight based LM/SBLM) in depth.

• FLM (Full (observations) Linear Model) — Here we consider that all the opinions of each
user is known, and the updates come asynchronously.

• PLM (Periodic Linear Model) — Here the opinions are always updated a�er every (say)
t time steps. Note that, the collected opinion stream only contains the timstamps of the
messages crawled. �e actual number of missing updates t are not known. So we estimate
t using cross-validation.

• ALM (Aperiodic Linear Model) — Here the length of time interval between subsequent
opinion observations varies across time. Note that, with the variation of time intervals,
ALM and PLM provide di�erent performances. Since, the actual number of missing updates
tk are not known, we obtain them using cross validation.

• SBLM (Stochastic Block approach to Linear Models) — Here we consider the node labels to
model the edge weights. �e base edge weights are captured using both ALM and PLM.
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However, we only report the results with base edge weights being picked up using ALM
alone.

Tables 2 and 3 show a comparative analysis of the opinion prediction error (Normalized RMSE
and �antized error) of four baseline algorithms along with di�erent variants of our algorithm. In
particular, Table 2 shows the results for the datasets crawled from Twi�er, while Table 3 describes
the performance for the datasets gathered from the in-house games. �e upper half of each table
reports the normalized mean square error that is the actual opinion prediction error, while the
rest report the quantized error that is the error in prediction of opinion polarity. We observe that
across all these datasets, the overall performance of our schemes is substantially be�er than all the
baselines.

8.2.1 Performance Analysis - Normalized RMSE (NRMSE). �e top half of each of Tables
2 and 3 shows a comparative view of actual opinion-prediction error.
Voter Model and Biased Voter Model: Performance of Voter model is particularly poor. It relies
on random opinion updates, thus evidently loses information of actual heterogenous dynamics.
Moreover, such version of Voter model keeps the set of opinions in a graph invariant throughout the
process. �is intrinsic property of Voter model prevents the opinion-values from not growing in a
larger space which thereby goes against the spirit of continuous opinion-model. Biased Voter Model
a�empts to overcome these limitations by introducing node weights. However, the performance of
Biased Voter model is worse than ALM or PLM. A closer scrutiny reveals that, biased voter model
parameterizes the node weights; but, due to uniform edge weights, it is unable to capture the actual
in�uence dynamics.
Flocking Model: Note that the NRMSE for �ocking is substantially lower than Voter model (o�en
Biased Voter model too) in most cases. Recall that this model updates the opinion of a node by
averaging those of her neighbours, that are very close to her. Such a selective averaging strategy
makes it functionally similar with the linear averaging models. As a result the performance of this
model is be�er than Voter model and her variants.

DeGroot Model: �e performance of DeGroot model is fairly competitive for Reddit and Twi�er.
�is is mainly because it incorporates di�erent edge weights that capture the actual dynamics of
information-�ow from one node to another, which is heavily neglected in the other three baselines.
�e relatively be�er performances of �ocking and DeGroot model also re�ect an inherent linearity
in the dynamics that justi�es our choice of a more generic linear model.

Linear Propagation Models: ALM and PLM perform signi�cantly be�er than all the baselines
in almost all the cases. A possible explanation can be that it captures the e�ect of intermi�ent
observations i.e. the phenomenon of periodic/aperiodic observations, which none of the baseline
algorithms take care of. Our model is also not limited to positive entries and row-stochasticity,
which are the major features of DeGroot model. Being the most generic linear model it captures the
negative in�uence, opinion �uctuation etc. and allows formation of any generic linear combinations
of opinions rather than their convex combinations. �is is evident from the few real-life examples
in Figure 4, where panels (b) and (c) show that the opinion of a user (C) may not follow as a convex
combination of the opinions of the users (B, A) she follows.
�e performance of SBLM is signi�cantly be�er than ALM and PLM. �is is because, in most real
scenarios, the edge-weights depend on the a�ributes of the connecting nodes. In fact, SBLM o�ers a
perfect accuracy in Tw:Movie, Tw:Series, Tw:Boxing, and Tw:Bollywood. SBLM correctly captures
that and enhances the performance. We give the details of the results for SBLM in Section 8.2.7.
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Normalized RMSE (%)
Dataset SBLM ALM PLM DeGroot Voter B-Voter Flocking
Tw:Politics 2.01 9.59 9.83 10.20 22.98 17.49 9.49
Tw:Movie 2.08 5.71 6.54 7.33 24.29 11.32 16.31
Tw:Series 1.04 3.12 3.74 9.58 27.34 13.22 12.30
Tw:Boxing 1.06 3.77 5.14 7.50 16.26 8.28 16.21
Tw:Bollywood 3.00 2.64 2.58 8.78 28.89 21.20 20.20
Reddit 5.86 6.81 7.03 6.00 15.60 7.51 8.24

�antized error (%)
Tw:Politics 0.12 2.55 2.92 2.96 6.21 7.23 8.23
Tw:Movie 0.00 0.53 0.88 1.10 2.93 2.30 1.10
Tw:Series 0.00 2.11 2.74 3.10 4.20 3.20 2.90
Tw:Boxing 0.00 0.84 2.53 5.26 8.20 3.71 4.32
Tw:Bollywood 0.00 1.07 1.16 3.25 6.22 4.67 7.37
Reddit 1.02 0.00 1.07 1.68 2.70 2.16 3.20

Table 2. Opinion prediction performance for periodic and aperiodic observation scenarios for all
crawled datasets for 90% training set. The first half of the table dissects forecasting error in terms
of NMSE and the second half shows QError. In each cell. The cells with light orange (blue) color
indicates the best (second best) predictor. The cells with grey color indicate the best performer among
the four state-of-the-art baselines.

Normalized RMSE (%)
Dataset AsLM BiasedVoter Voter DeGroot Flocking
Continents 10.42 31.46 35.51 23.94 32.89
Colleges 12.80 22.77 28.69 59.28 32.06
Occupation 10.36 23.06 30.32 33.28 31.64

�antized error (%)
Continents 0 1.96 2.94 1.96 5.88
Colleges 0 2.94 3.92 2.94 4.90
Occupation 0 2.94 6.86 0.98 7.84

Table 3. Opinion prediction performance in case of asynchronous full observations for all the in-house
games. The top half of the table shows prediction error in terms of Normalized RMSE and the bottom
half gives quantized error. The cells with light orange (grey) color indicates the best (second best)
predictor.

8.2.2 Performance Analysis - Quantized Error. As we can see from the bo�om half of
Table 2, quantized error is signi�cantly lower in all the datasets, than the baselines. We also observe
that SBLM substantially improves the performance as compared to the aperiodic and periodic
counterparts. �is is because, SBLM can accurately model the edge in�uences by incorporating
possible node a�ributes. For the three social games (Table 3), the performances of all the algorithms
are quite good. Our model gives a 100% accuracy in these three games. �is is because the active
participation of the users in the experiments lead to a rich dataset of opinions with a nice dynamical
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Fig. 3. Performance variation in terms of NMRSE with training size. As the training set increases, the
performance of all the algorithms becomes better. SBLM is observed to be the most stable model
amongst all. Due to a smaller number of parameters, SBLM can be trained with less training samples
than what is necessary for training other paradigms.
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Fig. 4. Two real life examples of opinion flow in a subgraph with three nodes. Panel (a) shows
a subgraph structure with three nodes where C follows A and B. Panels (b, Tw:Politics) and (c,
Tw:Series) show two examples taken from real data, that depict how opinions of A, B and C evolve
with time. We observe that the opinion of C changes as a nonconvex combination of those of A and B.
These examples motivate the necessity of a possible departure from DeGroot model which assumes
the row stochasticity of the underlying weighted adjacency matrix.

�ow without any intermi�ent observations. Hence, all the algorithms are able to capture the
dynamics of the process with high prediction accuracy.

ACM Transactions on the Web, Vol. 99, No. 99, Article 99. Publication date: 2017.



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

99:24 De et al.

50 60 70 80 90

Training Size

0

5

10

15

20

25

Q
u

n
a

ti
z
e

d
 E

rr
o

r

SBLM

PLM

ALM

Tw: Elections

50 60 70 80 90

Training Size

0

5

10

15

20

25
SBLM

PLM

ALM

Tw: Movie

50 60 70 80 90

Training Size

0

5

10

15

20

25
SBLM

PLM

ALM

Tw: Series

50 60 70 80 90

Training Size

0

5

10

15

20

25

Q
u
n
a
ti
z
e
d
 E

rr
o
r

SBLM

PLM

ALM

Tw: Boxing

50 60 70 80 90

Training Size

0

5

10

15

20

25
SBLM

PLM

ALM

Tw: Bollywood

50 60 70 80 90

Training Size

0

5

10

15

20

25
SBLM

PLM

ALM

Tw: Reddit

Fig. 5. Performance variation in terms of Quantized error with training size. As the training set
increases, the performance of all the algorithms becomes better. We observe that all the algorithms
show more or less stable performances with variation with training size. This is because, the variablity
of polarity is far less than that of actual opinion. Consequently, all the algorithms can be trained with
smaller number of samples and the performance stabilizes after a certain training-size.

8.2.3 Stability to training size. From Figures 3 and 5, we observe that as the training set
size increases, the performance becomes increasingly be�er for both PLM and ALM. We also
observe that SBLM is most frugal in terms of data requirements, and achieves the lowest errors
for a given training set size. �is is expected, as SBLM suitably �ts the data, by properly learning
the edge-weights along with the clusters the nodes belong to. For political topics (Tw:Politics), the
improvement rate is very high, in other words, the performance becomes be�er w.r.t. training-size
variation. It is because in political discussion, we observe a good dynamical �ow in opinion di�usion,
and consequently the predictive performance increases with higher training size. Furthermore, the
distribution of opinion in messages drastically changes from before to a�er the election. As a result,
the learned edge-in�uences are not so accurate while training on a smaller portion of data. As the
sample-size increases, the training becomes more and more robust and the predictive performance
improves. However, we �nd that for all other datasets, performance variation across training size is
mostly stable.

8.2.4 Effect of mesoscaling . To understand the e�ect of mesoscaled data acquisition, we �rst
construct communities over the social network using the method described in [19]. �is algorithm
allows to set the number of communities apriori, thus helping in further analysis. Also, communi-
ties obtained using this method contain crucial signals in social network scenarios [12, 13]. In the
existing datasets, we averaged these opinions over communities to obtain the community-level
sentiments. �en, we build our model MLearn over various training-set size and the number of
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Fig. 6. Effect of mesoscaling. Actual opinion prediction performance (NMRSE) of community-level
opinions. As the no. of community increases, the performance becomes better because of the
increasing experssive power of the model that enables it to capture more and more granular signals.

communities. Figures 6 to 9 report the results for the e�ect of mesoscaling on the overall perfor-
mance.

8.2.5 Overall Performance variation. As the number of communities increases, the overall
performance in terms of Comm-NRMSE gets be�er (�gures 6 and 7). �is is expected, since as
the number of communities increases, the model becomes more expressive and is able to capture
the granular signals. Reddit show irregular pa�ern in its performance, since the communities are
formed arbitrarily due to threshold based arti�cial graph construction. We also observe that when
the number of speci�ed communities is small, we don’t observe much variation of performance
with training size, since the community-level averaged opinions have similar distibution as time
grows.

8.2.6 Performance improvement due to mesoscaling. In order to establish the utility of
mesoscaling, we averaged individual NRMSE (derived from SBLM) of all members belonging to a
community and obtained corresponding Comm-NRMSE and then compared it with Comm-NRMSE
derived through mesoscaling. �e value of ∆NRMSE (Figure 8) is positive for most communities
which �rmly establishes the need of considering community level opinions which are smoother and
hence less noisy. An interesting observation brought out by Figures 8 and 9 is that the performance
improves initially as the number community grows and then decreases. �is trend is clearly
observed in the three datasets - Tw:Series, Tw:Boxing and Tw:Bollywood. It is indicative towards
an optimal granularity of opinion sensing for the topic and the network. For large community sizes,
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Fig. 7. Effect of mesoscaling. Opinion-polarity prediction performance (Quantized error) of community-
level opinions. As the no. of community increases, the performance becomes better.

the community-level opinions are over-compressed, leading to under-��ing of the edge-weight
matrix A. On the other hand, extremely granular sensing in�icts more noise, leading to over ��ing
of A.
�e improvement of quantized error (second row of Figure 9) follows a similar trend, only it

deteriorates faster specially in those scenarios where there are presence of lot of mild opinions
and some dominating opinions. In general, it is a hard task to predict the polarity of users with
mild opinions and that is re�ected in the poor improvement factor for all the variants of our proposal.

8.2.7 Opinion model with node classification. In the last subsection, we found that the
mesoscaling policy is useful in terms of the predictive power of the community-level signals. How-
ever, such community construction was based on edge-clustering. No node-properties was taken
into account. Here, we investigate the impact of community-construction based on node-properties.
In Table 4 we report the improvement factors for di�erent edge-distribution and training sizes
across all datasets collected from Twi�er. We observe similar trend for Reddit.
In most cases, the overall performance of SBLM strategy is substantially be�er than its individual
edge-weighting counterpart. �is is because, in practice, the interaction between two users mostly
depends on the nature/personalities of them. �erefore, the redundancy injected for exhaustive
edge-set learning is reduced a�er incorporating the node properties into edge modeling. In other
words, an individual edge-weighting method o�en leads to the over��ing of the model. By curating
an edge in�uence as a function of node a�ributes, we reduce the no. parameters from O(|E|) to
O(|V |), which in-turn decreases the over��ing tendency.
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Fig. 8. Variation of performance improvement (in terms of RMSE) due to mesoscaling, with no. of
communities and training-set size. As the number of community increases, the improvement first
increases and then decreases, suggesting to an optimum level of compression that gives the best
improvement.

80% Sampling 60% Sampling
Normal

Dataset Politics Movie Series Boxing Bollywood Politics Movie Series Boxing Bollywood
C = 4 6.0798 -15.1877 -15.9886 -14.4286 -46.3089 9.5455 -13.4338 -14.7631 -13.7680 -45.7740
C = 7 7.0634 3.5591 2.2852 2.8453 1.0575 10.5291 5.3129 3.5108 3.5060 1.5924
C = 10 7.0529 3.6077 2.2342 2.4405 0.7474 10.5186 5.3615 3.4598 3.1011 1.2822

Exponential
C = 4 6.0875 -16.4734 -14.8890 -14.5828 -46.1079 9.5532 -14.7196 -13.6634 -13.9221 -45.5730
C = 7 6.0989 -11.7864 -13.4794 -13.5742 -43.1158 9.5646 -10.0325 -12.2538 -12.9136 -42.5809
C = 10 6.0954 -10.1287 -12.7022 -13.0462 -37.1227 9.5611 -8.3748 -11.4767 -12.3855 -36.5878

Pareto
C = 4 5.8104 -40.5357 -32.0964 3.0884 -61.3375 9.2761 -38.7819 -30.8709 3.7490 -60.8027
C = 7 5.7672 -193.2024 -110.6837 2.4414 -168.6266 2.6163 -191.4466 -109.2810 3.1021 -168.0877
C = 10 5.7930 -248.9097 -136.9245 1.7654 -238.5074 1.1124 -247.1539 -135.5218 2.4260 -237.9685

Table 4. Improvement-factor (in %) after node-classifcation, given edge-weight distributions are
Normal, Exponential and Pareto.

Table 4 dissects the variation of performance of SBLM w.r.t. the pre-speci�ed number of clusters
(C). We clearly observe that a normal distribution fares reasonably be�er than all other distri-
butions in case of Politics, Movie, Series and Bollywood. Table 4 shows that, for C = 7, normal
distribution provides a signi�cant performance-boost for these four datasets. E.g. in Tw:Politics, the
improvement factor is more than 7%. However, in case of Tw:Boxing dataset, Pareto performs best,
resulting in a 3% performance improvement. For Tw:Politics, the performance is most consistent. It
performs well even with a small value of prespeci�ed no. of communities, which shows the utility
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Fig. 9. Variation of performance improvement (in terms of qunatization error) due to mesoscaling, with
no. of communities and training-set size. As the number of community increases, the improvement
first increases and then decreases, suggesting to an optimum level of compression that gives the best
improvement.

Tw:Politics Tw:Movie Tw:Series Tw:Boxing Tw:Bollywood

Fig. 10. Community structures on Twitter datasets, due to co-clustering algorithms on opinion models
with node-types. For Tw:Politics and Tw:Movie, we observe the community structures have higher
entropy than other datasets, that is an indication of strong interactions between the node-clusters.

of our frugal modeling assumption in general.
�e overall be�er performance of a normal distribution is primarily a�ributed to the existence of
substantial negative in�uences between users. �is is a major advantage of the proposed model
over DeGroot model, the closest counterpart of its kind. Hence, a normal distribution re�ects the
proper spectrum of the edges as opposed to exponential and Pareto distributions which restrict the
edge weights to be positive. Although Pareto fares quite well in case of Tw:Boxing dataset, it fares
very poorly for all other cases.
�ite surprisingly, Table 4 reveals that the relative performance of SBLM is signi�cantly be�er for
training with 60% samples than 80%. Note that, SBLM requires a far less amount of parameters to
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be trained, as compared to the per-edge models like ALM and PLM. �erefore, as the training size
decreases, it shows a slower rate of performance degradation. As a result, the improvement factor
becomes high for smaller training size.
It can be observed that, inmost of the datasets (Tw:Politics, Tw:Movie, Tw:Boxing, and Tw:Bollywood),
on increasing the number of node classes, the performance �rst improves and then deteriorates6. It is
because, choice of a few node-clusters may lead to too much compression of important user-aspects
which is re�ected in a relatively poor performance with C = 4 for all apriori edge-distribution. On
the other hand, increasing the number of clusters appears to over�t the learned-edge weight that
also results in a poor predictive power.
Figure 10 depicts the co-clustering structure obtained on learning SBLM, for normal distribution
with C = 7. In case of Tw:Politics and Tw:Movie, we observe that the entropy of the revealed
community structure is higher than other datasets. It indicates an intense inter-cluster interaction
(high B matrix). To some extent, we believe that this is one of the likely reasons responsible
for high improvement factor (> 7% for C = 7, Normal edge distribution) in case of Tw:Politics
dataset. Moreover, cross interaction between classes o�en indicates towards overlapping clusters i.e.
mixed-membership of a user to various communities. �is leaves an open space for modeling mixed-
membership stochastic block model while learning edge-in�uences in context of opinion dynamics.
On the other hand, for datasets (Tw:Series, Tw:Boxing and Tw:Bollywood) with block-structures
with lower entropy, the corresponding IF values turn out to be low.

8.2.8 Variation across data sets. From Table 2 we observe that the algorithms perform
substantially be�er in Reddit than in all Twi�er datasets. Note that in case of Reddit we have
collected the evolution of general political opinion whereas in Twi�er we concentrated on speci�c
events. Reddit is a forum, where people actually join to form an opinion/impression. �erefore,
it is natural that a user in Reddit view others’ post, form an opinion and write a well-thought
post. Also since the users are more in exploratory mode, a Reddit user can read and scrutinize
any other people’s comments, which evidently helps her to form an opinion. In our model we
have taken a decent estimate whereby two agents are neighbors if they have subscribed to three
common subreddits, even then we �nd that the reach of each agent is a magnitude higher than that
of Twi�er.
On the other hand Twi�er is a popular social-network site and we are looking into the data of

particular popular events. Since the underlying graph structure is sparse, an opinion may take time
to propagate and may get lost in the process [32]. �us, the e�ect of a distant node becomes almost
negligible. Also since the event tracked is popular, much of the information may be coming from
(outside) Twi�er and a user’s opinion may get in�uenced due to that [35]. �erefore, PLM/ALM
which assume local in�uence perform worse in capturing the in�uence dynamics.

9 CONCLUSION
In this paper, we presented a family of models for opinion propagation in social networks, by
estimating edge strengths from the stream of quantitative opinions at the nodes, changing with
time. Our model is based on a simple idea that opinion of a user changes as a linear combination
of the opinions of her neighbors. Here, the polarities and weights of this linear function re�ect
the corresponding in�uence between users. Unlike earlier work, our approach does not favor any
particular asymptotic or steady state behavior; rather, it aims to capture �ne grained transient
opinion dynamics. In order to make our model practically e�ective, we also consider a wide variety
of scenarios involving intermi�ent observation of opinions at irregular intervals. We also consider

6�is optimal number of node-classes are near seven (six to eight) for various datasets.
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another realistic data collection scenario, where opinions are acquired over communities, rather
than polling individual nodes. Such a se�ing provides a be�er predictive performance in case of
community-level opinion prediction. Finally, in order to o�er interpretable and frugal models, we
present a variant where edge in�uence mainly depends on the corresponding node properties,
which in turn are learned using a stochastic block model. Such a regularized form of in�uence
reduces over��ing and further boosts the predictive power of our model. Extensive experiments
over nine real-world datasets show that our proposal signi�cantly outperforms four state-of-the-art
baselines in predicting opinion dynamics of users individually (per user level) as well as collectively
(per community level).

Our work opens up many interesting directions for future work. An immediate extension would
be to aim for a nonlinear opinion modeling, which should uncover the complexity of the dynamics
be�er than its linear counterpart. Further, it would be of interest to remove our assumption that
in�uence itself is stationary. Speci�cally, here we assumed thatA is constant across time. However,
in the context of transient dynamics A itself can vary across time. �erefore, a time varying
adjacency matrix could capture opinion signals at more granular level. �e structure ofA o�en
reveals various properties of the users. Although one way to capture these node properties is
addressed in this paper, other approaches, e.g., Chung and Lu’s model [2], latent product model,
etc., may be useful.
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