TOP-DOWN PARSING , RECURSIVE -DESCENT PREDICTIVE PARSING

Top-down parsing:

The top down construction of a parse tree is done by starting with the root ,labeled with the starting non-terminal ,and repeatedly performing the following two steps-

1. at node n, labeled with non-terminal A,select one of the productions for A and construct

children at n for the symbols on the right side of the production

2. Find the next node at which the subtree is constructed.

For some grammars, the above steps can be implemented during a single left to right scan of the input string. The current token being scanned on the input is often called as the lookahead symbol . Initially the lookahead symbol is the first i.e the leftmost token of the input string.

Let us consider the following grammar.

A -> BA

| a

| aa

B ->
BB

| b

and now consider the input string “ bbaa”

The top-down parsing would look like this in different steps-

1.

A

input : bbaa , the highlighted character indicates the lookahead.

2.

A

B

 A

3. A

B

A

B

B

4.

A

B

A

B

B

b

5. input: bbaa

A

B

A

B

B

b

b

6. input: bbaa

A

B

A

B

B a a

b

b

Here we have assumed that , at the first attempt the parser would know

which production to use to get the right output, but in general, the selection of a production of a non-terminal may involve trial and error, that is we may have to try a production and backtrack to try another production if the first is found to be unsuitable. A production is unsuitable ,if after using the production, we cannot complete the tree to match the input string .we will discuss this parsing in the next section.

 RECURSIVE-DESCENT PARSING

This is general form of top-down parsing , called recursive descent parsing where backtracking may be involved. This is a bad type of parsing which involves repeated trying to get the correct output.This can also be termed as brute-force type of parsing. Presently, this type of parsing is outdated ,just because there are much better methods of parsing which we will be discussing later.

Consider the grammar:

S ->
cAd | bd

A -> ab | a

 and the input string is “cad”.

To construct the tree , we create an initial tree of just one node S.

The input pointer points to c , and we use the first production, for s

to get the expanded tree.

S

c
A
d

The leftmost leaf labeled c matches the fist symbol of the input and hence we advance the pointer to the second symbol of the input which is a. we now expand A by its first production to obtain the following

tree.

S

c
A
d

 a

b

 now we have a match for the second symbol of the input and hence advabce the pointer to d , and compare it with the next leaf b, which does not match , we report failure and go back to see whether there is an alternative production for A.

In going back to A ,we must backtrack the input pointer to a.

finding another production , we try out the next configuration.

S

c
A
d

a

Now the leaf a matches with the second symbol of the input and the the third leaf d matches with the third symbol of the input.

And because the input string is consumed , we halt and denote the successful completion of parsing.

PREDICTIVE PARSING:

This is a top down parsing method where we execute a set of recursive set of procedures to process the input. A procedure is associated with a nonterminal of a grammar. Here the lookahead symbol unambiguously determines the procedure selected for each nonterminal . The sequence of procedures called in processing the input implicitly defines a parse tree for the input.

Consider the grammar:

S ->
cAd | bd

A -> ab | e

PSEUDO CODE for a predictive parser

function match(token t)

{

if lookahead = t
 then

lookahead = nexttoken()

 else error

}

function S

{

if lookahead is in { c }

match(c) , A(),match (d);

else if lookahead is in {b }

match(b) , match(d);

else if lookahead is in {a,e}

A();

else error

}

function A

{

if lookahead is in { a }

match(a) , match(b);

else if lookahead is in { e }

match(e);

else if error

}

input string: “ced”

The function match() compares the current lookahead symbol with the argument token and if matched changes the lookahead symbol by advancing the input pointer.

Parsing begins with a call to the procedure for the starting nonterminal S in our grammar. Because the lookahead 'c' is in the set { c } , the function S executes the code:

if lookahead is in { c }

match(c) , A(),match (d);

once it matched 'c' , the function A() is called and checks out that the next input symbol 'e' is then in the set { e } , it executes the code :

else if lookahead is in { e }

 match(e);

After the matching of 'e' is over it returns from the function A() and matches the next token with 'd'.

some important points:

Predictive parsing relies on information about what first symbols can be generated by right side of a production.

If A ->  is a production, then FIRST() is defined as the set of tokens that appear as the first symbols of one or more strings generated from ß .

so obviously if A-> 

 A->  are two productions

and if FIRST() , FIRST() are not disjoint , then this parsing would falter.

Also , this parsing would falter if there is LEFT RECURSION in the grammar.

In that case the parser will loop forever.

Consider the left recursive production expr -> expr + term

 suppose the procedure for expr decides to apply this production. The right side begins with expr so the procedure for expr is called recursively and the parser loops forever. Note that the lookahead symbol changes only when a terminal in the right side is matched. Since the production begins with the nonterminal expr , no changes to the input take place between recursive calls , causing the infinite loop.

P.Nagender Reddy

03CS1021

