
Fairness in AI/ML
Identify and mitigate bias in ML-based decision-making, in all aspects of data
pipeline

February 7, 2025 1 / 147



Stages of ML system
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Unfairness due to data issues

Assumption that training and testing data are sampled from the same
distribution may not always be true.

ML models are trained based on the above assumption leading to
unfairness issues.
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Unfairness due to model issues

Models can amplify disparities in data, including stereotypes. For
example, embeddings trained on news data were shown to correlate
gender with specific occupations (e.g., ’nurse’ and ’female,’ ’doctor’ and
’male’).

Accuracy optimization often prioritizes the majority class, potentially
worsening outcomes for smaller or underrepresented classes. Example:
In a dataset with 95% ’majority class’ and 5% ’minority class,’ a model
could achieve 95% overall accuracy by ignoring the minority class
entirely, leaving its predictions unfair or unusable for that group.
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Unfairness due to Feedback Loops

Loop extends to downstream tasks
Order of search results - determines clicks.

Predictive policing - more police to high-crime areas.

Decision to detain a defendant affects probability of pleading guilty.

1. Initial Model Decision: model sends more police patrols to certain areas
2. Agent Action: Police patrol those areas frequently
3. Outcome: More crimes these areas, not cuz more crime, but more policing
4. Feedback Loop: newly recorded crime data reinforces model’s unfair belief
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How to do Fair Classification?

S-blindness: Removing or ignoring the “membership in A”
This fails because membership in A may be encoded in other attributes.

Awareness: Assign each individual a representation by being aware of
membership in group A.

1 Individual fairness: If two individuals are close on the similarity metric,
they should be close on the treatment metric.

2 Group fairness: It ensures some form of statistical parity (e.g. between
positive outcomes, or errors) for members of different groups.
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Confusion Matrix
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Notations

Random Variables

X ∈ Rd : Feature vector (Criminal Features like gender, age, race etc.)

Y ∈ 0,1 : True labels (Recidivate or not in 2 years) - note we focus on
binary classsificatiomn setting

Ŷ ∈ 0,1 : Classifier’s predicted labels (Recidivism prediction by Classifier)

A ∈ 0,1 : Sensitive Attribute (Race = black,white)

R : Classifier prediction scores

(X, Y) : Data Distribution

(X, Y, R, A, Ŷ) : Joint Distribution

B ⊥ C : Two independent random variables
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Fairness Definitions

Predictive Rate Parity

P(Y = 1|Ŷ = 1,A = a) = P(Y = 1|Ŷ = 1,A = b)

This ensures that the predicted positive outcomes are equally likely to be true
positives across groups, hence achieving parity in predictive rates.

Predictive Equality

P(Ŷ = 1|Y = 0,A = a) = P(Ŷ = 1|Y = 0,A = b)

This focuses on equalizing the rate of false positives (predicting positive when
the true label is negative) across groups, hence the term predictive equality.
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Fairness Definitions

Equal Opportunity

P(Ŷ = 1|Y = 1,A = a) = P(Ŷ = 1|Y = 1,A = b)

This ensures that true positive rates (opportunities for correct predictions) are
equal across groups, leading to the name equal opportunity.

Equalized Odds

P(Ŷ = 1|Y = 1,A = a) = P(Ŷ = 1|Y = 1,A = b)

P(Ŷ = 1|Y = 0,A = a) = P(Ŷ = 1|Y = 0,A = b)

This achieves equality in both true positive rates and false positive rates,
balancing the odds across groups.
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Example 1: Overview

Scenario Description
Sensitive Attribute: Gender (male, female). Female is the minority.

Outcome: Selection for a job (after interview).

Goal: Achieve Predictive Rate Parity while violating Equal Opportunity.

Key Fairness Definitions

Predictive Rate Parity: P(Y = 1|Ŷ = 1,male) = P(Y = 1|Ŷ = 1, female)1mm]Equal Opportunity: P(Ŷ = 1|Y = 1,male) = P(Ŷ = 1|Y = 1, female)

February 7, 2025 11 / 147



Example 1: Data for Male Group

Male Group Information
Total individuals: 200

Actual positive outcomes (Y=1): 50

Predicted positive outcomes (=1): 50

True positives (correct predictions): 40

False positives: 10

Calculations (Male)

PPV (Predictive Rate) = P(Y = 1|Ŷ = 1,male) =
40
50

= 0.81mm]TPR (Equal Opportunity) = P(Ŷ = 1|Y = 1,male) =
40
50

= 0.8
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Example 1: Data for Female Group

Female Group Information
Total individuals: 100

Actual positive outcomes (Y=1): 40

Predicted positive outcomes (=1): 25

True positives (correct predictions): 20

False positives: 5

Calculations (Female)

PPV (Predictive Rate) = P(Y = 1|Ŷ = 1, female) =
20
25

= 0.81mm]TPR (Equal Opportunity) = P(Ŷ = 1|Y = 1, female) =
20
40

= 0.5
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Example 1: Conclusion

Fairness Metric Comparison
Predictive Rate Parity (PPV):

0.8 (male) = 0.8 (female)

Equal Opportunity (TPR):

0.8 (male) ̸= 0.5 (female)

Interpretation
Although the selected candidates (predicted positives) are equally likely to be
truly qualified in both groups (PRP holds), the proportion of truly qualified
individuals who are selected (TPR) is higher for males than for females. Thus,
Equal Opportunity is violated.
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Example 2: Overview

Scenario Description
Sensitive Attribute: Gender (male, female). Female is the minority.

Outcome: Selection for a job (after interview).

Goal: Achieve Equal Opportunity while violating Predictive Rate Parity.

Key Fairness Definitions

Equal Opportunity: P(Ŷ = 1|Y = 1,male) = P(Ŷ = 1|Y = 1, female)1mm]Predictive Rate Parity: P(Y = 1|Ŷ = 1,male) = P(Y = 1|Ŷ = 1, female)

February 7, 2025 15 / 147



Example 2: Data for Male Group

Male Group Information
Total individuals: 200

Actual positive outcomes (Y=1): 50

Predicted positive outcomes (=1): 80

True positives (correct predictions): 40

False positives: 40

Calculations (Male)

TPR (Equal Opportunity) = P(Ŷ = 1|Y = 1,male) =
40
50

= 0.81mm]PPV (Predictive Rate) = P(Y = 1|Ŷ = 1,male) =
40
80

= 0.5
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Example 2: Data for Female Group

Female Group Information
Total individuals: 100

Actual positive outcomes (Y=1): 40

Predicted positive outcomes (=1): 40

True positives (correct predictions): 32

False positives: 8

Calculations (Female)

TPR (Equal Opportunity) = P(Ŷ = 1|Y = 1, female) =
32
40

= 0.81mm]PPV (Predictive Rate) = P(Y = 1|Ŷ = 1, female) =
32
40

= 0.8
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Example 2: Conclusion

Fairness Metric Comparison
Equal Opportunity (TPR):

0.8 (male) = 0.8 (female)

Predictive Rate Parity (PPV):

0.5 (male) ̸= 0.8 (female)

Interpretation
Although the proportion of truly qualified individuals selected is equal in both
groups (TPR holds, hence Equal Opportunity is satisfied), the reliability of the
predicted positives (PPV) differs significantly between males and females.
Thus, Predictive Rate Parity is violated.
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Fairness Definitions

Statistical Parity / Demographic Parity / Disparate Impact

P(Ŷ|A = a) = P(Ŷ|A = b) This ensures that the predicted outcomes are
independent of the group membership, aiming for equal representation in
predictions across groups, which justifies the terms statistical parity,
demographic parity, or disparate impact.

Equalized Odds / Disparate Mistreatment (TPRs, FPRs are same)

P(Ŷ = 1 | Y=1, A=a) = P(Ŷ = 1 | Y=1, A=b)

P(Ŷ = 1 | Y=0, A=a) = P(Ŷ = 1 | Y=0, A=b)
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Fairness Definitions

Predictive Equality: Equal FPR (False positive rate)

P(Ŷ = 1|Y = 0,A = a) = P(Ŷ = 1|Y = 0,A = b)∀a,b ∈ A

Equal Opportunity: Equal TPR (True positive rate)

P(Ŷ = 1|Y = 1,A = a) = P(Ŷ = 1|Y = 1,A = b)∀a,b ∈ A
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Fairness Definitions

Conditional Use Accuracy Equality (PPV / PRP and NPV are same)

P(Y = 1|Ŷ = 1,A = a) = P(Y = 1|Ŷ = 1,A = a)∀a,b ∈ A

P(Y = 0|Ŷ = 0,A = a) = P(Y = 0|Ŷ = 0,A = a)∀a,b ∈ A

Overall Accuracy Equality

P(Ŷ = 1|A = a) = P(Ŷ = 1|A = b)∀a,b ∈ A
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Fairness Definitions

Calibration

P(Ŷ = 1|R = r,A = a) = P(Ŷ = 1|R = r,A = b)∀a,b ∈ A

Well-Calibration

P(Ŷ = 1|R = r,A = a) = P(Ŷ = 1|R = r,A = b) = r∀a,b ∈ A

Balance for Positive Class

E(R|Y = 1,A = a) = E(R|Y = 1,A = b)∀a,b ∈ A

Balance for Negative Class

E(R|Y = 0,A = a) = E(R|Y = 0,A = b)∀a,b ∈ A
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Statistical Definitions

Independence: Classifier scores R are independent of sensitive attribute A e.g.
demographic parity, conditional demographic parity.

R ⊥ A

Separation: Classifier scores R are independent of the sensitive attribute
given the labels e.g. equalized odds, equal opportunity.

R ⊥ A|Y

Sufficiency: Labels are independent of sensitive attribute given the classifier
scores e.g. Predictive Rate Parity

Y ⊥ A|R
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Statistical Definitions

Y ⊥ A (1)

No issues at all, as concept/study of fairness is required only when Y is
dependent on A.
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Statistical Definitions

Though there have been multiple metrics of fairness proposed, the three
commonly used ones are presented below. (This does not imply that all
fairness metrics can be grouped into these three categories; rather, these are
among the most widely adopted metrics in fairness research.)

1. Independence: this ensures that the predictions are independent of the
sensitive attribute, i.e. prediction probabilities are equal across all values of the
sensitive attribute (e.g. Demographic Parity, Statistical Parity, etc.).

R ⊥ A (2)

2. Separation

3. Sufficiency
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Statistical Definitions

Though there have been multiple metrics of fairness proposed, the three
commonly used ones are presented below.

1. Independence

2. Separation: this ensures that the accuracy of the model are independent of
the sensitive attribute given the target label groups(e.g. Equalized Odds, Equal
Opportunity etc.).

R ⊥ A | Y (3)

3. Sufficiency
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Statistical Definitions

Though there have been multiple metrics of fairness proposed, the three
commonly used ones are presented below.

1. Independence

2. Separation

3. Sufficiency: this ensures that given the classifier scores, the labels are
independent of sensitive attribute. In other words, given a score the probability
of the true variable being 1 should be the same for each group(e.g. Predictive
Rate Parity.).

Y ⊥ A | R (4)
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Impossibility Theorem

Theorem: The Impossibility Theorem states that no more than one of the
three fairness metrics of demographic parity, predictive parity and equalized
odds can hold at the same time for a well calibrated classifier and a sensitive
attribute capable of introducing machine bias. In simple words, it states that
any 2 of the 3 definition of fairness are mutually exclusive.
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Proof of the Theorem

Lemma
Statistical Parity and Predictive Parity are mutually exclusive unless
A ⊥ Y

Proof.

Given R ⊥ A | Y ⇒ Ŷ ⊥ A using(2) (5)

Y ⊥ A | R ⇒ Y ⊥ A | Ŷ ⇒ P(A | Ŷ,Y) = P(A | Ŷ) (6)

P(A | Ŷ) = P(A) using(5)

To Prove : A | Y ⇒ P(A | Y) = P(A)

Solution : P(A | Y) = ∑
b

P(Ŷ = b)P(A | Y, Ŷ = b)

P(A | Y) = ∑
b

P(Ŷ = b)P(A | Ŷ = b) using(8)

= P(A)
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Proof of the Theorem

Lemma
Equalised Odds and Predictive Parity are mutually exclusive unless
A ⊥ Y

Proof.

Given R ⊥ A | Y ⇒ Ŷ ⊥ A | Y ⇒ P(A | Ŷ,Y) = P(A | Ŷ) (7)

Y ⊥ A | R ⇒ Y ⊥ A | Ŷ ⇒ P(A | Y, Ŷ) = P(A | Y) (8)

To Prove : Y ⊥ A

Solution :

P(A | Y = 1) = P(A | Ŷ = 1,Y = 1)P(Ŷ = 1)+P(A | Ŷ = 0,Y = 1)P(Ŷ = 0)

P(A | Y = 1) = P(A | Ŷ = 1)P(Ŷ = 1)+P(A | Ŷ = 0)P(Ŷ = 0)

= P(A)

⇒ Y ⊥ A
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Proof of the Theorem

Lemma
Statistical Parity and Equalised Odds are mutually exclusive unless
A ⊥ Y or Y ⊥ Ŷ

Proof.

Given R ⊥ A(Ŷ ⊥ A)⇒ P(A | Ŷ) = P(A) (9)

A ⊥ R | Y(A ⊥ Ŷ | Y)⇒ P(A | Ŷ,Y) = P(A | Y) (10)

Solution : P(Ŷ = b) = P(Ŷ = b | A = a)

P(Ŷ = b) = ∑
y

P(Ŷ = b | A = a,Y = y)P(Y = y | A = a)

P(Ŷ = b) = ∑P(Ŷ = b | Y = y)P(Y = y | A = a)

P(Ŷ = b) = ∑
y

P(Ŷ = b | Y = y)P(Y = y)
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Proof of the Theorem

Lemma
Statistical Parity and Equalised Odds are mutually exclusive unless
A ⊥ Y or Y ⊥ Ŷ

Proof.
⇒ Now let us define following f n on y

p = P(Y = y)

pa = P(Y = y | A = a)

b0 = P(Ŷ = b | y = 0)

b1 = P(Ŷ = b | y = 1)

pb0 +(1−p)b1 = pab0 +(1−pa)b1

b0(p−pa)−b1(p−pa) = 0

(b0 −b1)(p−pa) = 0

P(Ŷ = b | Y = 0) = P(Ŷ = b | Y = 1)

⇒ Ŷ ⊥ Y
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Metrics Considered While Building ML System

Accuracy: the measure of how often the model is correct in its
predictions.

Fairness: the measure of how well the model treats different subgroups
of the population, based on characteristics such as race, gender, or age.

Explainability/Simplicity: the measure of how well the model can be
understood and interpreted by humans, including how it arrived at its
predictions.

Privacy: the measure of how well the model protects sensitive
information and maintains the privacy of individuals whose data is used to
train or test the model.

Security: the measure of how well the model is protected from attacks,
such as adversarial examples or poisoning attacks.
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Fairness Vs Accuracy

An implication from the above impossibility theorem: If the sensitive
attribute is predictive of the outcome (i.e., there is a correlation between
the two), then it is impossible to satisfy both demographic parity and
perfect accuracy.

If the sensitive attribute is predictive of the outcome, then removing this
information from the model may result in a loss of accuracy.
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Fairness Vs Accuracy

To balance fairness and accuracy:

one could use a model that achieves a certain level of accuracy while also
satisfying some notion of fairness, such as demographic parity.

one could use a model that achieves a high level of accuracy but adjusts
the model’s predictions based on the sensitive attribute to ensure that the
model’s predictions are not biased.
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Fairness Vs Accuracy

Fairness vs Accuracy Pareto Optimal Front:

Let F be a fairness metric, such as statistical parity or equalized odds,
and let E be an error metric, such as misclassification rate or
cross-entropy loss. Then, the Pareto optimal front is defined as follows:

P = (E,F) ∈ R2 : ∄(E′,F′) ∈ R2 such that E′ < E and F′ ≥ F

A classifier is on the Pareto optimal front if there is no other classifier that
achieves lower error and higher fairness, or equivalently, higher accuracy
and lower fairness.

Wei, Susan, and Marc Niethammer. "The fairness-accuracy Pareto front."
Statistical Analysis and Data Mining: The ASA Data Science Journal 15.3
(2022): 287-302.

February 7, 2025 36 / 147



Fairness Vs Accuracy

Consider a binary classifier that assigns a label ŷ to an input x based on
some function f (x):

ŷ =

{
1, if f (x)≥ t
0, otherwise

where t is a threshold. Let p(y = 1|a) denote the probability of observing
a positive label given the protected attribute a.

We say that the classifier satisfies minimum fairness if it achieves
statistical parity, which is defined as follows:

p(ŷ = 1|a = 1) = p(ŷ = 1|a = 0)
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Fairness Vs Accuracy

Suppose there are n individuals, and let xi denote the outcome for
individual i. Then a solution x∗ is Pareto optimal if there is no other
feasible solution x′ such that:

▶ x′i ≥ xi for all i
▶ There exists at least one j such that x′j > xj

A solution is Pareto optimal if there is no other feasible solution that
improves the outcome for at least one individual without making the
outcome worse for any other individual.
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Fairness Vs Accuracy

The classifier satisfies the highest fairness if it achieves equalized odds,
which is defined as follows: p(ŷ = 1|y = 1,a = 1) = p(ŷ = 1|y = 1,a = 0)
p(ŷ = 1|y = 0,a = 1) = p(ŷ = 1|y = 0,a = 0)

Satisfying the highest fairness may require sacrificing accuracy. A perfect
classifier that achieves maximum accuracy may not necessarily ensure
fairness.
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Simplicity - Notations

J. Kleinberg, S. Mullainathan, Simplicity Creates Inequity: Implications for
Fairness, Stereotypes, and Interpretability. ACM Conference on Economics
and Computation, 2019

A (productivity) score function f over the individuals is called simple if it is
independent of certain features of individuals.

▶ Simple means explainability

Applicants are described by (Boolean) variables x.

Set-Up: Assume that each data point is a k-dimensional (X) with (k+1)st
dimension as A (sensitive attribute). All the dimensions are assumed to
be binary (0/1).

x<1>,x<2>,x<3>, ....,x<k>

▶ Assumption: Features are independent of each other.

Function f describes productivity f(x) of applicant with features x.

Plan: Sort by f-value high to low and admit the top r fraction
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Simplicity - Notations

Function f is independent of group f(x, A) = f(x, D) = f(x)

Disadvantage: Group D has a worst distribution of feature vectors i.e they
have more probability mass on feature vectors producing the lower values

µ(x, γ) = fraction of population with features x in group γ.

Function f is a conjunction of all features (‘AND’) here.

February 7, 2025 41 / 147



Case 1

Applicants from A have x<i> = 1 with probability 2/3
Applicants from D have x<i> = 1 with probability 1/3

Figure: No simplification / true values
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Terms and Calculation

For the row-1 having x<1> = 1 , x<2> = 1 and belonging to the ‘D’ group

µ(fraction of people) = 1
3 * 1

3 * 1
2 = 1/18

µ = P(γ = D,x<1> = 1)∗P(γ = D,x<2> = 1)∗P(γ = D) (11)

productivity(f ) = x<1>x<2> (12)

At all admission rates r ≤ 1
18 +

4
18 = 5

18 (first 2 rows of the table), all
admitted have f-value 1, with a 1

5 fraction from group D

Equity = ratio of Disadvantages to Advantageous in the accepted rate

equity = 1
4 (D = 1

18 , A = 4
18 )

average f = 1(all admitted are 1)
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Reasons to simplify

Collecting all data may be expensive

Interepretability or cognitive complexity (for large instances)

Out-of-sample generalization

Removing a variable that confers some of the disadvantage
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Case 2: using only x<1>

Now if we simplify f by using only x(1) the table would be

First four rows of Table 1 compress to first row of Table 2 and similarly for
the next four rows.

average f =
∑i fi.µi

∑i µi
(13)

Since r is 5/18, the admitted applicants are solely from row-1 average f = 5/9
(earlier this was 1)
For equity, row-1(x(1)=1) consists of (from table 1) D = 1/18 + 2/18 = 3/18 and
A = 4/18 + 2/18 = 6/18
Equity is 1:2 (earlier was 1:4). We see a gain in equity but a fall in productivity
or f
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Case 2: using only x<1>

However, the value obtained is when we choose randomly.
In many cases bias creeps in so when the x2 is not shown, the selector may
stereotype and choose all the selected candidates from the advantageous
class. We show the behavior in the next slide.
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Case 2: Bias Selection

Now if we simplify f by using x(1) n group the table would be

Figure: Considering x<1> and group

As r is 5/18,
The applicants are admitted solely from row-1, hence only A is chosen
Average f = 2/3 [(1 * 4/18 + 0 * 2/18)/6/18],
Equity (D/A) is 0/1 We see that both f and equity are less than that of true
values.
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Case 3: Reservation

Now if we simplify f by using x(1) n group the table would be

Figure: Considering x<1> + reservation

If Equity is 1:4 (D:A), f = (2/3 * 4 + 1/3 * 1)/(4 + 1) = 3/5

If Equity is 2:3 (D:A), f = (2/3 * 3 + 1/3 *2)/ (2 + 3) = 8/15
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Case 4: Treating (1,1,D) separately from case-1

As we find in the previous cases, the (1,1,D) row of D has a major
disadvantage

So we simplify the table as below

As r is 5/18, we chose 1/18 of row-1 and 4/18 of row-2

If the 4/18 is chosen uniformly at random from row-2

equity = 2
3 , Average f = 3

5
The average f is better than the reservation case with same equity.
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Case 4: case of complete bias

As r is 5/18, we chose 1/18 of row-1 and 4/18 of row-2

If the 4/18 is chosen completely biased from row-2

equity = 1
4 , Average f = 11

15
f = (1 * 1/18 + 4/18 * 2/3)/(5/18) = 11/15

The average f is better than Case 2 (Bias Selection), and also hugely
better equity.

Similarly, the f is better than reservation (Case 3) for same equity.
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Case 4: case of 80% bias for A

As r is 5/18, we chose 1/18 of row-1 and 4/18 of row-2

If the 4/18 is chosen with a 80% biased from row-2

let A1:D1 and f1 represent the fraction and avg. f-score of the row-2
respectively.

A1 = 4/18 + 2/18 = 6/18 - ratio of 0.8

D1 = 2/18 ratio of 0.2

A1/D1 = 6/18∗0.8
2/18∗0.2 = 12:1

f1 = (12 * 2/3 + 1 * 0)/13

f = (1*1/18 + f1*4/18)/(1/18 + 4/18)

A:D = (12 * 4/18)/(13 * 1/18 + 1 * 4/18)
This has a better f compared to reservation (Case 3) with an equity of 1:4.
Also, for an equity of 2:3, f would be better in this case than Reservation
Please find f when equity = 2:3
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Result

For every Boolean function f with real-valued outputs satisfying the
disadvantage condition and a genericity assumption, and for every
simplification g of it (partitioning feature vectors into cells by fixing variables):

There is always an f-approximator that strictly improves g in both
efficiency and equity

If g does not use group membership then adding group membership as a
variable increases efficiency and reduces equity

Advantages: Easy to calculate, Can work with less data points
Disadvantages: Working with less data points may lead to stereotype answers,
Productivity and equity may decrease.
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Fair Classification Algorithms

A model can be made more fair, by attacking it at the following stages:

1. Preprocessing: We modify the data representation and make it bias free
and apply a standard classifier like SVM, Logistic Regression, etc. on the new
representation.

2. Inprocessing: We add fairness constraints during the training process of
the classification algorithm to learn a less biased model. We work the
constraint into the optimization process that constructs a classifier from
training data.

3. Postprocessing: The output of the machine learning model is modified in
order to reduce bias in the output.
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Preprocessing
Certifying and removing disparate impact
Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger,
Suresh Venkatasubramanian
July 2015
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Fair Classification - Preprocessing

We discuss Feldman et al (2014), one of the early preprocessing
algorithms in fair machine learning.

The paper formalizes the connection between fairness and the
predictability of protected class.

The algorithm modifies each attribute so that the marginal distributions
based on the subsets of that attribute with a given sensitive value are all
equal. It does not modify the training labels.

Aim is to ensure that the marginal distribution of an attribute is the same
across the sensitive attribute.
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Preprocessing - Feldman et al

Disparate Impact (“80% rule”): Given data set D = (X,Y,C), with

Protected Attribute X (e.g., race, sex, religion, etc.). e.g. gender
X ∈ {M,F}
Remaining attributes Y

Binary class to be predicted C (e.g., “will hire”).C = 0 for positive class
and C = 1 for the negative class.

we will say that D has disparate impact if

Pr(C = YES|X = 0)
Pr(C = YES|X = 1)

≤ τ = 0.8 (14)

That is protected class is positively classified less than τ times as often as the
unprotected class. (legally, τ = 0.8 is common).
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Preprocessing - Feldman et al

Can we verify that a classifier on Y will not have disparate impact with respect
to X?

Big Idea: A classifier learned from Y will not have disparate impact if X cannot
be predicted from Y

Computational Fairness: Alice uses algorithm A to decide who to hire. A
takes data set D with protected attribute X and unprotected attributes Y and
makes a binary decision C. It is Bob’s job to verify that on the data D, Alice’s
algorithm A is not liable for a claim of disparate impact. Then the idea is that if
Bob cannot predict X given Y, A is fair on D.
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Certifying and Removing disparate Impact - Feldman et al

The disparate impact certification problem is to guarantee that, given D,
any classification algorithm aiming to predict some C′ (which is potentially
different from the given C) from Y would not have disparate impact.

The disparate impact removal problem is to take some data set D and
return a data set D̄ = (X, Ȳ,C) that can be certified as not having disparate
impact. The goal is to change only the remaining attributes Y , leaving C as in
the original data set so that the ability to classify can be preserved as much as
possible.
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Certifying disparate Impact - Feldman et al

Following Table describes the confusion matrix for a classification with respect
to the above attributes where each entry is the probability of that particular pair
of outcomes for data sampled from the input distribution

Outcome X = 0 X = 1
C = NO a b
C = YES c d

Table: A confusion matrix

Likelihood Ratio (Positive):

LR+(C,X) =
sensitivity

1− specificity
=

d/(b+d)
c/(a+ c)

(15)
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Certifying Disparate Impact - Feldman et al

Disparate Impact: A data set has disparate impact if

LR+(C,X)>
1
τ
= 1.25 (16)

Balanced Error Rate (BER):

BER(f (Y),X) =
Pr[f (Y) = 0|X = 1]+Pr[f (Y) = 1|X = 0]

2
(17)

Predictability: X is ε-predictable from Y if there exists a function
f : Y → X such that BER(f (Y),X)≤ ε
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Certifying Disparate Impact - Feldman et al

Theorem: A data set is (1
2 −

β

8 )-predictable iff it admits disparate impact,
where β is the fraction of elements in the minority class (X = 0) that are
selected (C = 1).
Proof of Theorem:

Disparate Impact → Predictability

Predictability → Disparate Impact
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Proof: Disparate Impact → Predictability

Suppose there exists some function g : Y → C such that:
LR+(g(Y),X)≥ 1

τ

Consider the confusion matrix associated with g :

Outcome X = 0 X = 1
g(y) = NO a b
g(y) = YES c d

Table: Confusion matrix for g

Set α = b
b+d and β = c

a+c

LR+(g(Y),X) = 1−α

β

DI(g) = β

1−α
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Proof: Disparate Impact → Predictability

We define the purely biased mapping ψ : C → X as ψ(YES) = 1 and
ψ(NO) = 0

Let φ : Y → X = ψog

Consider the confusion matrix associated with φ :

Outcome X = 0 X = 1
φ(y) = NO a b
φ(y) = YES c d

Table: Confusion matrix for φ

Confusion matrix for φ is identical to the matrix for g and BER(φ) = α+β

2
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Proof: Disparate Impact → Predictability

We can now express contours of the DI and BER functions as curves in
the unit square [0,1]2

Reparameterizing π1 = 1−α and π0 = β, we can express the error
measures:

▶ DI(g) = π0
π1

: Any classifier g with DI(g) = δ can be represented in the

[0,1]2 as the line π1 =
π0
δ

▶ BER(φ) = (1+π0−π1)
2 : Any classifier φ with BER(φ) = ε can be written as

the π1 = π0 +1−2ε
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Proof: Disparate Impact → Predictability

Let us now fix the desired DI threshold τ, corresponding to the line
π1 =

π0
τ

Notice: Region {(π0,π1)|π1 ≥ π0
τ
} is the region where one would make a

finding of disparate impact (τ = 0.8)

Consider the point (β, β

τ
), at which the line π0 = β intersects the DI curve

π1 =
π0
τ

This point lies on the BER contour:

(1+β− β

τ
)/2 = ε

ε =
1
2
−

β(1
τ
−1)
2

(18)

in particular for the DI threshold of τ = 0.8, the desired BER threshold is:
ε = 1

2 −
β

8 . So disparate impact implies predictability
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Proof: Predictability → Disparate Impact

Suppose there is a function f : Y → X such that BER(f (y),x)≤ ε

Let ψ−1 : X → C be the inverse purely biased mapping i.e.
ψ−1(1) = YES and ψ−1(0) = NO

Let g : Y → C = ψ−1of

Recall BER(φ) = (1+π0−π1)
2 , this gives us π1 ≥ 1+π0 −2ε. Therefore:

π0

π1
≤ π0

1+π0 −2ε
= 1− 1−2ε

1+π0 −2ε
(19)

Recall DI(g) = π0
π1

and π0 = β yields:

DI(g)≤ 1− 1−2ε

1+β−2ε
= τ (20)

for τ = 0.8, gives us BER threshold of: ε = 1
2 −

β

8
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Certifying disparate Impact - Feldman et al

Algorithm:

We run a classifier that optimizes BER on the given data set, attempting to
predict the X from Y. Suppose the error in this prediction is ε. Using the
estimate of β from the data, we can substitute this into the equation
ε = 1/2−β/8 and obtain a threshold ε’. If ε′ > ε then data set is free from
disparate impact.
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Certifying disparate Impact - Feldman et al

Figure: Lack of predictability (BER) of the protected attributes on the data set as
compared to the disparate impact found in the test set when the class is predicted
from the non-protected attributes

February 7, 2025 68 / 147



Removing Disparate Impact - Feldman et al

We want to change D so that it is no longer predictable. How can we do this?
Given (X,Y), we want to construct a repaired data set (X,Y) such that for all g:
Y→X, BER(g(Y),X) > ε, where ε depends on the strength of guarantee we
want.
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Removing Disparate Impact - Feldman et al

Claim: Perfect repair is always possible.
Proof: Just set Y to 0 for every individual. For example, in a hiring decision, do
not hire anyone. That is a fair choice.
Recall that

BER(f (Y),X) =
Pr[f (Y) = 0|X = 1]+Pr[f (Y) = 1|X = 0]

2

Then on the repaired data, the balanced error rate of any classifier is 1/2,
which is the maximum possible balanced error rate.
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Removing Disparate Impact - Feldman et al

Cumulative Distribution Function (CDF) refers to the Probabilities of X being
smaller than or equal to some value x: FX(x) = Pr(X ≤ x) = p. This function
takes as input x and returns values from the [0,1] denoted as P. Quantile
Function refers to the The inverse of the cumulative distribution function tells
us what x would make FX(x) return some value p: F−1(p) = x
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Removing disparate Impact - Feldman et al

Given protected attribute X and a single numerical attribute Y, let
Yx = Pr(Y|X = x) denote the marginal distribution on Y conditioned on X = x.
Let Fx : Yx → [0,1] be the cumulative distribution function for values y ∈ Yx and
let F−1

x : [0,1]→ Yx be the associated quantile function. We will say that Fx

ranks the values of Yx.

Let Y be the repaired version of Y in D. We will say that D strongly preserves
rank if for any y ∈ Yx and x ∈ X, its repaired counterpart y ∈Yx has
Fx(y) = Fx(y).
We define a “median” distribution A in terms of its quantile function
F−1

A : F−1
A (u) = medianx∈XF−1

x (u)
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Removing disparate Impact - Feldman et al

Lemma: Let A be a distribution such that FA
−1(u)= medianx∈X Fx

−1(u). Then
A is also the distribution minimizing ∑x∈X d(Yx, C) over all distributions C,
where d(·,·) is the earthmover distance on R.

Algorithm: The proposed repair algorithm creates Y , such that for all y ∈ Yx,
the corresponding y= FA

−1(Fx(y)). The resulting D= (X,Y , C) changes only Y
while the protected attribute and class remain the same as in the original data,
thus preserving the ability to predict the class.

Rank preserving repair means that if we have a case where person 1 is
selected and person 2 is not selected before repair then in no case will person
1 not be selected if person 2 is selected after repair.
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Removing disparate Impact - Feldman et al

Algorithm:

1. Let px
y be the percentage of agents with protected status x whose numerical

score is at most y.

2. We take a data point (xi,yi) and calculate pxi
yi

.

3. We find y−1
i such that p1−xi

yi−1 = pxi
yi

.

4. We repair ȳi = median(yi,y−1
i ).
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Removing disparate Impact - Feldman et al

Figure: Hypothetical SAT scores
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Removing disparate Impact - Feldman et al

Full Repair Example

Blue curve: Distribution of SAT scores for X = female, µ = 550,σ = 100
Red curve: Distribution of SAT scores for X = male, µ = 400,σ = 50

pF
700 = 1/2 = Pr(y ≤ 700|x = F) Percentage of females getting ≤ 700 marks is

50%.[y1 = 700]
pF

750 = 3/4 = Pr(y ≤ 750|x = F) Percentage of females getting ≤ 750 marks is
75%. [y2 = 750]
pM

500 = 1/2 = Pr(y ≤ 500|x = M) Percentage of males getting ≤ 500 marks is
50%. [y−1

1 = 500]
pM

550 = 3/4 = Pr(y ≤ 550|x = M) Percentage of males getting ≤ 550 marks is
75%. [y−1

2 = 550]
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Removing disparate Impact - Feldman et al

We obtain repair ȳ1 = median(y1,y−1
1 ) = (700+500)/2 = 600

We obtain repair ȳ2 = median(y2,y−1
2 ) = (750+550)/2 = 650

Also note that since y1 ≤ y2 before repair, we will always have ȳ1 ≤ ȳ2 after
repair.

Black curve: Fully repaired data is the distribution in black, with
µ = 475,σ = 75

Male score in 95th percentile: 500→625
Female score in 95th percentile: 750→625

ȳ2 = α1y1 +α2y2 = αy1 +(1−α)y2
Here α acts as the knob to control disparate impact in the dataset. If α > 1

2
then there will be reverse disparate impact. The order will still be preserved but
in their own segments.
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Fairness Constraints: A Flexible Approach for Fair Classification
Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, Krishna P.
Gummadi
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How Machines Learn?

1 By training over historical data.
2 Example task: Predict who will return loan.

1 Learning challenge: Learn a decision boundary (W) in the feature space
separating the two classes
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Predict who will return loans?

1 Optimal (most accurate / least loss) linear boundary
2 But, how do machines find (compute) it?
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Learning (computing) the optimal boundary

1 Define & optimize a loss (accuracy) function
1 The loss function captures inaccuracy in prediction

2 Minimize (optimize) it over all examples in training data
2 Central challenge in machine learning

1 Finding loss function that capture prediction loss, yet be efficiently
optimized

2 Many loss functions used in learning are convex
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Convex-boundary based loss functions
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Predict who will return loans?

1 Optimal (most accurate / least loss) linear boundary
2 But, how do machines find (compute) it?
3 The boundary was computed using
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How to learn to avoid discrimination

1 Specify discrimination measures as constraints on learning.
2 Optimize for accuracy under those constraints.

3 The constraints embed ethics & values when learning.
4 No free lunch: Additional constraints lower accuracy.
5 Tradeoff between performance & ethics (avoid discrimination)
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A few observations

1 Any discrimination measure could be a constraint.

2 Might not need all constraints at the same time.
1 E.g., drop disp. impact constraint when no bias in data.
2 When avoiding disparate impact/mistreatment, we could achieve higher

accuracy without disparate treatment
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Key technical challenge

1 How to learn efficiently under these constraints?

2 Problem: The above formulations are not convex!
1 Can’t learn them efficiently.

3 Need to find a better way to specify the constraints.
4 So that loss function under constraints remains convex.
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Disparate impact constraints: Intuition

Limit the differences in the acceptance (or rejection) ratios across members of
different sensitive groups
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Disparate impact constraints: Intuition

Limit the differences in the average strength of acceptance and rejection
across members of different sensitive groups.
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Specifying disparate impact constraints

1 Instead of requiring:

2 Bound covariance between items’ sensitive feature values and their
signed distance from classifier’s decision boundary to less than a
threshold

February 7, 2025 89 / 147



Learning classifiers w/o disparate impact

1 Previous formulation: Non-convex, hard-to-learn

2 New formulation: Convex, easy-to-learn
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A few observations

1 Our formulation can be applied to any convex- margin (loss functions)
based classifiers

1 hinge-loss, logistic loss, linear and non-linear SVM
2 Can easily change our formulation to optimize for fairness under accuracy

constraints
1 Useful in practice, when you want to be fair but have business necessity to

meet a certain accuracy threshold
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Specifying mistreatment constraints

Idea: Avg. misclassification distance from boundary for both groups should be
the same.
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Rewriting mistreatment constraints
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Rewriting mistreatment constraints

1 Can be solved efficiently.
2 Using Disciplined Convex-Concave Programming.
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Learning classifiers w/o disparate mistreatment

1 New formulation: Convex-concave, can learn efficiently using
convex-concave programming.
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Fair Classification - Postprocessing

Paper being followed
Hardt, Moritz, Eric Price, and Nati Srebro. "Equality of opportunity in
supervised learning." Advances in neural information processing systems 29
(2016).
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Fair Classification - Postprocessing

We discuss Hardt et al., a post-processing algorithm that uses the
paradigm of score transformation.

The algorithm adjusts (post-process) the scores produced by an arbitrary
classifier to remove discrimination from the data.
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Contributions of the Paper

The paper proposes a simple, interpretable, and actionable framework for
measuring and removing discrimination based on protected attributes.
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Contributions of the Paper

The paper proposes a simple, interpretable, and actionable framework for
measuring and removing discrimination based on protected attributes.

Contribution 1 - The paper proposes an easily checkable and
interpretable notion of avoiding discrimination based on protected
attributes. The paper’s notion enjoys a natural interpretation in terms of
graphical dependency models.
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Contributions of the Paper

The paper proposes a simple, interpretable, and actionable framework for
measuring and removing discrimination based on protected attributes.

Contribution 1 - The paper proposes an easily checkable and
interpretable notion of avoiding discrimination based on protected
attributes. The paper’s notion enjoys a natural interpretation in terms of
graphical dependency models.

Contribution 2 - The paper gives a simple and effective framework for
constructing classifiers satisfying our criterion from an arbitrary learned
predictor. Rather than changing a possibly complex training pipeline, the
result follows via a simple post-processing step that minimizes the loss in
utility.

February 7, 2025 101 / 147



Objective

We assume a source distribution over (Y, X, A), where Y is the target or true
outcome (e.g. “default on loan”), X is the available features, and A is the
protected attribute.
The objective of supervised learning is to construct a (possibly randomized)
predictor Ŷ = f (X,A) that predicts Y as is typically measured through a loss
function. Furthermore, we would like to require that Ŷ does not discriminate
with respect to A, and the goal of this paper is to formalize this notion.
To do so, a post-processing needs to be done on Ŷ to get Ỹ .
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Equalized Odds

We say that a predictor Ŷ satisfies equalized odds with respect to
protected attribute A and outcome Y, if Ŷ and A are independent
conditional on Y.
Unlike demographic parity, equalized odds allows Ŷ to depend on A but
only through the target variable Y. As such, the definition encourages the
use of features that allow to directly predict Y but prohibits abusing A as a
proxy for Y.

Pr{Ŷ = 1|A = 0,Y = y}= Pr{Ŷ = 1|A = 1,Y = y}; y ∈ {0,1} (21)
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Equal Opportunity

We say that a binary predictor Ŷ satisfies equal opportunity with respect
to A and Y if

Pr{Ŷ = 1|A = 0,Y = 1}= Pr{Ŷ = 1|A = 1,Y = 1} (22)

Equal opportunity is a weaker, though still interesting, notion of
non-discrimination, and thus typically allows for stronger utility as we shall
see in our case study.
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Oblivious Measures

A property of a predictor Ŷ or score R is said to be oblivious if it only
depends on the joint distribution of (Y, A,Ŷ) or (Y, A, R), respectively.

Derived Predictor

A predictor Ỹ is derived from a random variable R and the protected
attribute A if it is a possibly randomized function of the random variables
(R, A) alone. In particular, Ỹ is independent of X conditional on (R, A).
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Derived Predictor

The derived predictor Ỹ can be derived from in the following way (we are using
Ŷ instead of R:

Pr{Ỹ = 1|A= a,Y = y}=<LINEAR TRANSFORM > (Pr{Ŷ = 1|A= a,Y = y})
(23)

such that, Pr{Ỹ = 1|A = a,Y = y} CAN POTENTIALLY TAKE ALL VALUES
IN [0,1]
Note it is assumed that there is access of ground truth (Y) during the training
session.
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Derived Predictor - Intuition

Intuition

To ensure that the resultant Pr{Ỹ = 1|A = a,Y = y} can take values from 0
to 1, an appropriate affine combination (explained in the next few slides)
could be a solution for a linear transformation.
NOTE THAT -

Pr{Ỹ = 1|A = a,Y = y} = 0 (no one gets the job) is FAIR

Pr{Ỹ = 1|A = a,Y = y} = 1 (all get the job) is FAIR

But, both the above cases are not efficient.

February 7, 2025 107 / 147



Convex Combination Representation

Vertices of the Parallelogram

A general point (x,y) (don’t confuse with X, X represents input features) inside
the parallelogram can be expressed as a convex combination of its four
vertices:

(0,0), (u,v), (1,1), (1−u,1− v)

Barycentric Coordinates

Any point (x,y) inside the parallelogram can be represented in terms of
barycentric coordinates or as an AFFINE COMBINATION of the vertices:

(x,y) = λ1(0,0)+λ2(u,v)+λ3(1,1)+λ4(1−u,1− v)

where λ1,λ2,λ3,λ4 are weights satisfying:

λ1 +λ2 +λ3 +λ4 = 1

Same result if λ1 = 0
February 7, 2025 108 / 147



Expanded Form

Equations for x and y
Expanding the equation:

x = λ2u+λ3 +λ4(1−u)

x = (λ2 −λ4) ·u+(λ3 +λ4)

Let α = λ2,β = λ3,γ = λ4 (α+β+ γ = 1)

x = (α− γ) ·u+(β+ γ)

Similarly,
y = (α− γ) · v+(β+ γ)
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Deriving from a Binary Predictor

We will first develop an intuitive geometric solution in the case where we adjust
a binary predictor Ŷ and A is a binary protected attribute. For convenience, we
introduce the notation :

ya(Ŷ)
def
=

(
Pr{Ŷ = y|A = a,Y = 0},Pr{Ŷ = y|A = a,Y = 1}

)
(24)

The first component of ya(Ŷ) is the false positive rate of Ŷ within the
demographic satisfying A = a. Similarly, the second component is the true
positive rate of Ŷ within A = a.
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Deriving from a Binary Predictor

Lemma 4.2. A predictor Ŷ satisfies:
1 Equalized odds if and only if y0(Ŷ) = y1(Ŷ), and
2 Equal opportunity if and only if y0(Ŷ) and y1(Ŷ) agree in the second

component, i.e., y0(Ŷ)2 = y1(Ŷ)2.

For a ∈ {0,1}, consider the two-dimensional convex polytope defined as the
convex hull of four vertices:

Pa(Ŷ)
def
= convhull

{
(0,0),ya(Ŷ),ya(1− Ŷ),(1,1)

}
(25)
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Deriving from a Binary Predictor

Lemma 4.3. A predictor Ỹ is derived if and only if for all a ∈ {0,1}, we have
ya(Ỹ) ∈ Pa(Ŷ).

Proof

Since a derived predictor Ỹ can only depend on (Ỹ,A) and these variables are
binary, the predictor Ỹ is completely described by four parameters in [0,1]
corresponding to the probabilities Pr{Ỹ = 1|Ŷ = ŷ,A = a} for ŷ,a ∈ {0,1}.
Each of these parameter choices leads to one of the points in Pa(Ŷ) and every
point in the convex hull can be achieved by some parameter setting.
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Deriving from a Binary Predictor

Combining Lemma 4.2 with Lemma 4.3, we see that the following optimization
problem gives the optimal derived predictor with equalized odds:

minỸ El(Ỹ,Y)(El−ExpectedLoss)−ENSURES ACCURACY

s.t ∀a ∈ {0,1} : ya(Ỹ) ∈ Pa(Ŷ) (derived)−POSTPROC. CONSTRAINT

y0(Ỹ) = y1(Ỹ) (equalizedodds)−ENSURES FAIRNESS
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Derived Predictor

The derived predictor Ỹ can NOW be derived from in the following way (we are
using Ŷ instead of R:

Pr{Ỹ = 1|A = a,Y = y} =(α− γ) ·Pr{Ŷ = 1|A = a,Y = y}+β+ γ

α,β,γ ∈ [0,1] & α+β+ γ = 1(26)
Note it is assumed that there is access of ground truth (Y) during the training
session.
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During Inference ....

Pr{Ỹ = 1|A = a} =Pr{Ỹ = 1|A = a,Y = 1} ·Pr{Y = 1}+Pr{Ỹ = 1|A = a,Y = 0} ·Pr{Y = 0} (27)

Once we calculate Pr{Ỹ = 1|A = a} , we can sample from this probability
distribution to get Ỹ .
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Ensuring generalized fairness in batch classification

Manjish Pal, Subham Pokhriyal, Sandipan Sikdar and Niloy Ganguly
Scientific Reports volume 13, Article number: 18892 (2023)
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Problem Set-Up
For a particular dataset X a set of sensitive attributes (like ’race’, ’gender’
etc.) are given.

All the subpopulations are modeled as subsets Sj (e.g. ’black’) where
S = {S1,S2, . . . ,Sm} is the set of all distinct subpopulations.

Let the set of sensitive attributes corresponding to these populations be
A1,A2 . . . ,Ak.

Example X = {a,b,c,d,e},S1(male) = {a,b},S2(female) =
{c,d,e},S3(black) = {b,d},S4(white) = {a,c,e} and
A1 = gender,A2 = race.

Fair-Classification: Learn from the training data and ensure low
unfairness in test data.
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Fair Batch Classification
Classification is point-wise i.e. elements are to be labelled one at a time
once training is done.

Instead we consider the problem of classification of entire test data (or of
batches) as a postprocessing step.

In this work we propose LP-based fair batch classification and compare
with state of the art fair classification, ranking and subset selection
algorithms.

Fair batch classification is more suitable in recruitment and admission-like
scenarios.
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Proposed Postprocessing Step
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Notions of Fairness
Two most well studied and popular notions of fairness considered namely
Demographic Parity and Equalized Odds.

Our algorithms can handle the important case of multiple overlapping
subpopulations for both DP and EO unlike many others in the literature.

Demographic Parity: Ensure same acceptance rate / selection rate
across sensitive subpopulations.

Equalized Odds: Ensure same TPR and FPR across sensitive
subpopulations.
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Notions of Fairness
Single Sensitive Attributes All the sensitive populations (subsets)
belong to a single attribute e.g. S1 = white,S2 = black,S3 = hispanic.
Here Si

⋂
Sj = φ ∀i, j ∈ [m].

Independent Groups The sets Sj’s can be intersecting e.g.
S1 = male,S2 = black,S3 = female.

Intersectional Groups Elements of Sj are k-tuples of the form
(a1,a2, . . .ak) ∈ A1 ×A2 · · ·×Ak. In this case Si

⋂
Sj = φ ∀i, j ∈ [m].
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Overlapping Groups
Gerrymandering Groups Elements of Sj are r-tuples of the form
(a1,a2, . . .ar) ∈ Ai1 ×Ai2 · · ·×Air for any r < k. In this case, generally,
Si
⋂

Sj ̸= φ.
Simple exercise; show that

▶ Independent Groups ⊆ Gerrymandering Groups.
▶ Intersectional Groups ⊆ Gerrymandering Groups.
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Defining Demographic Disparity (DDPM)
For multiple overlapping subpopulations, we can define Demographic
Disparity (DDPM) as the difference between the maximum and
acceptance rates of a classifier Ŷ across all the sensitve populations.
Mathematically,

For the case of a single sensitive attribute A with two subpopulations,
DDPS =max

j
P[Ŷ = 1|A = 0]−min

j
P[Ŷ = 1|A = 1].

For arbitrary sensitive subpopulations Si’s
DDPM =max

j
P[Ŷ = 1|Sj]−min

j
P[Ŷ = 1|Sj]
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The Configuration Model

We define a configuration as [β] = {β1,β2 · · ·βm} where
βj = P[Ŷ = 1|S = Sj] and j ∈ [m] is simply the acceptance rate of the
subpopulation Sj.

We also define a configuration based Demographic Disparity, DDPC,
which can be used to compare any two given configurations [β] and [β′].

DDPC([β], [β
′]) = l∞([β], [β′])

We can think of [β] as the natural or input configuration (acceptance
rates) and [β′] as the obtained configuration (acceptance rates) with
low DDPM.

Under some conditions we can prove a relationhship between DDPC and
DDPM.
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lemma
Given a configuration [β] in which the acceptance rates across all the
subpopulations are the same and equal to β, one can show DDPM([β′])/2 ≤
DDPC([β], [β′]) where [β′] = {β′

1,β
′
2, . . . ,β

′
m} is an arbitrary configuration and

β ∈ [min
j

β′
j,max

j
β′

j].

proof

Since, β ∈ [min
j

β′
j,max

j
β′

j], we can write DDPM(β′) = max
j

β′
j −min

j
β′

j =

(max
j

β′
j −β)+(β−min

j
β′

j)≤ 2 ·max
j

|β′
j −β|= 2DDPC([β], [β

′]).
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Decidability Problem for Demographic Disparity

Problem (Demographic Disparity)

Let X be a universal set with |X|= n. Given a collection S = {S1,S2, · · ·Sm} of
subsets of X as the set of all subpopulations across the sensitive attributes
and a configuration [β] = (β1,β2, . . .βm), decide whether there exists a 0/1
labeling of elements of the universal set X such that the configuration [β] can
be realized for all the m (possibly overlapping) sets.
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Data without True Labels

We first consider the case when data is unlabelled and fairness is ensured by
attaining low DDPM using a linear program which we refer to as LPC.
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Data with True Labels

Then we consider data has true labels and reduce DDPC while
maintaining accuracy, precision and recall.

We crucially use the confidence values P[Ŷa = 1] returned by a classifier
(say Random Forest or SVM) for every record a.

Our approach provided flexibility to realize an arbitrary configuration [β]
chosen by the user.

Our approach can also provide flexibility to control DDPM for multiple
overlapping subpopulations unlike other algorithms.
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Linear Programming based Solution (LPCA)
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LPCA-Meaning of Variables and user defined Parameters

χ(a) : The variable that decides the post-processed label for data record
a.

w(a) (user-input) : The weight associated with record a. Any weighing
scheme can be used that gives more weight to records with high
confidence scores of the classifier.

ε (user-input): desired upper bound on DDPC.

βi (user-input) : desired acceptance rate for the subgroup Si. This can be
given as direct input or using the equation.

βinitial
i (user-input): The acceptance rates of subgroup Si in the training

data.

β̂ (user-input): Desired acceptance rate of all subgroups.

α (user-input): Controls how much importance is given to βinitial
i and β̂.
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Extending configuration models for Equalized Odds

Configuration Model [β] = {β1,β2 · · ·βm} where βj = P[Ŷ = 1|S = Sj] and
j ∈ [m] is simply the acceptance rate of the subpopulation Sj.
Ground Truth [η] = {η1,η2 · · ·ηm}
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Difference of Equalized Odds (DEOM)

Analogous to DDP we can extend the definition of difference of equalized
odds multiple subpopulation case.

DEOM = (max
j

TPRj −min
j

TPRj)+(max
j

FPRj −min
j

FPRj).

DEOM = (max
j

βj ·∆j −min
j

βj ·∆j)+(max
j

βj ·∆′
j −min

j
βj ·∆′

j).

where ∆j =
P[Y=1|Ŷ=1,S=Sj]

P[Y=1|S=Sj]
and ∆′

j =
P[Y=0|Ŷ=1,S=Sj]

P[Y=0|S=Sj]
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Decidability problem for of Equalized Odds

Problem (Equalized Odds)

Let X be a universal set with |X|= n, such that each element x ∈ X has a tag
r(x) ∈ {0,1}. Given a collection S = {S1,S2, · · ·Sm} of subsets of X as the set
of all subpopulations across the sensitive attributes, a configuration [β]
= (β1,β2, . . .βm) and (tpr, fpr), decide whether there exists a 0/1 labelling of
the elements of X such that the configuration can be realized with the given tpr
and fpr for all the m sets w.r.t the given tags r(.).
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Combined Linear Program (LPCA and LPCEO)
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Results for LPC

We show that LPC can realize very low DDPC (and DDPM) for various real
world datasets and also for synthetic dataset with a large number of sensitive
attributes (k).
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Performance Metrics

Accuracy = TP+TN
TP+TN+FP+FN .

Precision = TP
TP+FP

Recall = FP
TP+FN

Usually we consider Fairness vs Accuracy tradeoffs, but is accuracy
always the best performance metric ?

In the context of fairness when we are selecting items, it might be better
to focus on the selected set and how many TPs we have in that set.

How to characterize this ? Depends on the natural acceptance of each
subpopulation in the training data.
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Performance Metrics

If the chosen acceptance rate βi < βnatural
i , then precision is a better

metric, otherwise recall is better. Why?

Let us say our target configuration is {β,β, . . . ,β} a particular set (Sj) has

N elements, then precision = TP
β·N . Since βi < βnatural

i , it is better to look
at how many TP are there in the selected set.

Also recall = FP
βnatural

j ·N . Thus when βi > βnatural
i , it is better to compare the

total number of FPs.

We consider the weighted versions of precision and recall which is
averaged over the cardinalities of each of the subpopulations.
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Comparative Results for DDPM

We compare configuration-wise performance of LPCA with diverse fair
classification, ranking and subset-selection algorithms.
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Comparative Results for DDPM

Comparison of least DDPM achieved by different baselines.
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Comparative Results for DEOM

We compare configuration wise performance of LPCEO with various fair
classification algorithms.
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Fair Gerrymandering

Ensure fairness in several overlapping subpopulations proposed by
Kearns et al. (ICML 2018). Studied seriously, in a paper by Yang et al.
(NeurIPS 2020).

LPCA and LPCEO show improved accuracy and DEOM on
configurations of Yang.
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Perturbation of Training data

Unlike other classification and ranking algorithms, our results remain
unaffected by change in sensitive data in the training data.
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Parameter Study
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Future Work

Investigate whether the configuration model can be applied to other
notions of fairness like counter-factual fairness and calibration.

A classifier is said to be counterfactually fair if it satisfies,

A classifier is said to satisfy calibration if
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Future Work

Can the notion of Equalized Odds be extended to unsupervised graph
theoretic scenarios like fair clustering for multiple overlapping attributes?

In the context of interpretability and explainability can we analyze and
understand the relationship between descriptive accuracy and fairness ?

Will it be helpful to use non-linear optimization paradigms like SDP or
other cone programming techniques as has been used by Zafar et al.
(JMLR 2019) in case of Equalized Odds?
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Conclusion

In this work, we have developed LP-based batch classification algorithms
to ensure demographic parity and equalized odds.

The configuration model efficiently handles the case of multiple
overlapping subpopulations and gerrymandering and provides flexibility to
the user.

Our algorithms are LP-based and conceptually simpler and faster than
state-of-the-art fair classification, ranking and subset selection algorithms
and provide modest improvement in performance.
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