Beyond Distributive Fairness in Algorithmic Decision Making:

Feature Selection for Procedurally Fair Learning

Nina Grgić-Hlača, Muhammad Bilal Zafar,

Krishna P. Gummadi and Adrian Weller

Algorithmic Decision Making

- Algorithms help people make decisions about
 - Hiring
 - Assigning social benefits
 - Granting bail

Are these algorithms fair?

Types of Algorithmic Fairness

Distributive Fairness

Fairness of **decision making** outcomes

Example

- Equal misclassification rates
 - Grant bail to high risk white defendants
 - Deny bail to low risk black defendants
 - → unfair outcomes

Procedural Fairness

Fairness of the **decision making process**

Example

Fairness of using features

Is it fair to use a feature in decision making?

• A Notion of Procedural Fairness: Feature Usage Fairness

Quantifying Feature Usage Fairness

• Mechanisms for Achieving Feature Usage Fairness

Discrimination

• Sensitive (race, gender) vs non-sensitive features

- Volitionality (e.g., criminal history of defendant's father)
 - Does the feature represent the result of volitional (i.e., voluntarily chosen) decisions made by the individual (e.g., number of prior offenses); or rather is it the result of circumstances beyond their control?

Discrimination

• Sensitive (race, gender) vs non-sensitive features

- Volitionality (e.g., criminal history of defendant's father)
- **Relevance** (e.g., defendant's education
 - Is the feature causally related or not to the decision outcomes?

Discrimination

• Sensitive (race, gender) vs non-sensitive features

- Volitionality (e.g., criminal history of defendant's father)
- **Relevance** (e.g., defendant's education)
- Reliability
 - How reliably can a feature be assessed (e.g., in credit assessments, opinions towards bankruptcy may be harder to reliably assess than number of prior bankruptcies)

Discrimination

• Sensitive (race, gender) vs non-sensitive features

- Volitionality (e.g., criminal history of defendant's father)
- **Relevance** (e.g., defendant's education)
- Reliability
- Privacy
 - Does use of the feature give rise to a violation of the individual's privacy?

Discrimination

• Sensitive (race, gender) vs non-sensitive features

Fairness beyond discrimination

- Volitionality (e.g., criminal history of defendant's father)
- **Relevance** (e.g., defendant's education)
- Reliability
- Privacy

Background knowledge on fairness of features not in the data!

Gather human moral judgments

Human Judgments of Fairness

Case study: COMPAS tool for predicting criminal risk

Reasoning About Fairness

• What determines people's moral judgments about fairness?

There is more to fairness than discrimination!

Quantifying Fairness of a Classifier

• Feature usage fairness

• The fraction of people that consider using that feature fair

• Feature usage fairness of a classifier

• Fraction of people that consider **all** of its **features fair**

Fairness – Accuracy Tradeoff

- Intuitively
 - Adding features: higher accuracy, lower fairness
 - Removing features: lower accuracy, higher fairness
- There is a tradeoff between feature usage fairness & accuracy

Fair Feature Selection

- We want to select a subset of features that leads to
 - High accuracy
 - High feature usage fairness
- Formulation

 $\begin{array}{ll} \underset{S \subseteq \mathcal{F}}{\text{maximize}} & accuracy(\mathcal{S}) \\ \text{subject to} & unfairness(\mathcal{S}) \leq t \end{array}$

• How do we do this?

Naïve Approach

Brute force

• Train 2ⁿ classifiers, n = number of features

- Not scalable! 30 features = more than 1 billion classifiers
- Is there an efficient alternative?

Submodular Optimization

• Feature usage unfairness is submodular & monotone

Fairness Properties - Monotonicity

- Feature unfairness is monotone non-decreasing
- Intuition
 - A set function is monotone nondecreasing if adding elements to a set cannot decrease its value
- Definition

 $g(\mathcal{F}_i \cup \{f\}) \ge g(\mathcal{F}_i), \\ \forall \mathcal{F}_i \subseteq \mathcal{F}, f \in \mathcal{F} \setminus \mathcal{F}_i$

Fairness Properties - Submodularity

- Feature unfairness is submodular
- Intuition
 - A set function is submodular if it exhibits diminishing marginal returns

Definition

$g(\mathcal{F}_A \cup \{f\}) - g(\mathcal{F}_A) \ge g(\mathcal{F}_B \cup \{f\}) - g(\mathcal{F}_B),$ $\mathcal{F}_A \subseteq \mathcal{F}_B \subset \mathcal{F}, f \in \mathcal{F} \setminus \mathcal{F}_B$

Submodular Optimization

- Feature usage unfairness is submodular & monotone
- Submodular cost submodular knapsack problem
 - Approximate using ISK algorithm (Iyer and Bilmes, NIPS 2013)

- Efficient & scalable approximation
- Near optimal results

ISK algorithm

 $\begin{array}{ll} \underset{S \subseteq \mathcal{F}}{\text{maximize}} & accuracy(\mathcal{S}) \\ \text{subject to} & unfairness(\mathcal{S}) \leq t \end{array}$

- Maps to Submodular Cost Submodular Knapsack problem
- Guarantees & hardness

Approx. factor*

Bi-Criterion factor#

$$[1-e^{-1}, rac{K_f}{1+(K_f-1)(1-\kappa_f)}]^{\#}$$

- Algorithm
 - Iteratively finding modular approximations of submodular functions & solving the resulting knapsack problems

Accuracy Properties

- Accuracy is weakly submodular
- More precisely
 - Logistic loss with I2 regularization exhibits restricted strong convexity, which implies it's weakly submodular
- Intuition on why this approach performs well
 - Greedy algorithms preform well in practice for logistic loss with l2 regularization

Procedural vs Distributive Fairness

In the ProPublica COMPAS dataset:

high process fairness → high outcome fairness

Key Points

- A Notion of Procedural Fairness: Feature Usage Fairness
 - Relies on people's moral judgments
 - Beyond discrimination: volitionality, relevance, reliability...
- Quantifying Feature Usage Fairness of a Decision Making System
 - Fraction of people that consider all features fair
- Mechanisms for Achieving Feature Usage Fairness
 - Control tradeoffs between fairness and accuracy
 - Submodular measure \rightarrow scalable fair feature selection