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Abstract—Historical data used for supervised learning may
contain discrimination. We study how to train classifiers on
such data, so that they are discrimination free with respect
to a given sensitive attribute; e.g., gender. Existing techniques
that deal with this problem aim at removing all discrimination
and do not take into account that part of the discrimination
may be explainable by other attributes, such as, e.g., education
level. In this context, we introduce and analyze the issue of
conditional non-discrimination in classifier design. We show that
some of the differences in decisions across the sensitive groups
can be explainable and hence tolerable. We observe that in
such cases, the existing discrimination aware techniques will
introduce a reverse discrimination, which is undesirable as well.
Therefore, we develop local techniques for handling conditional
discrimination when one of the attributes is considered to be
explanatory. Experimental evaluation demonstrates that the new
local techniques remove exactly the bad discrimination, allowing
differences in decisions as long as they are explainable.

Index Terms—discrimination; classification; independence;

I. INTRODUCTION

Discrimination is a biased treatment towards individuals

on the basis of their affiliation to different groups, rather

than on individual merit. In many countries, several types of

discrimination, such as those based on gender, race, sexual

preference, and religion are forbidden by law. When humans

make subjective decisions, inevitably individual discrimination

cases may occur. Such cases can be brought to court for an in-

depth analysis of the circumstances. But not only humans can

discriminate. Nowadays more and more decisions in lending,

recruitment, grant or study applications are partially being

automated based on models fitted on historical data.

Supervised learning uses historical data to infer a relation

between an instance and its label. That historical data may

contain discrimination; for instance, racial discrimination in

the recruitment of job candidates. In such a case classifiers

are likely to learn the discriminatory relation present in the

historical data and apply it when making predictions. Inappro-

priately trained models may hence discriminate systematically,

which is a lot more harmful than in single cases.

It is in the best interest of the decision makers (e.g. banks,

consultancies, universities) to ensure that the classifiers they

build are discrimination free even if the historical data is

discriminatory. The following case illustrates the legal context

and the difficulty of the task. Recently one of the world largest

consultancy firms was accused of discrimination against ethnic

minorities in a law suit [1]. The firm used existing criminal

records to turn down candidates in pre-employment screening.

Not the use of criminal records itself was considered problem-

atic. In this data race and criminality was correlated, and the

use of criminal records indirectly lead to racial discrimination.

Thus, even though the company did not intend to discriminate,

the decisions were deemed discriminatory by the court, while

having been convicted was deemed to be not relevant for pre-

screening purposes. This example shows that discrimination

may occur even if the sensitive information is not directly

used in the model and that such indirect discrimination is as

well forbidden. Many attributes can be used only to the extent

that they do not lead to indirect discrimination.
The current solutions to make classifiers discrimination free

[2]–[5] aim at removing all discrimination present in the data;

the probability of a positive decision by the learned classifier

must be equal for all subgroups defined by the sensitive

attribute (e.g., male and female). As we observe in this paper,

however, such approaches have a significant limitation, as they

do not take into account the fact that a part of the differences

in the probability of acceptance for the two groups may be

objectively explainable by other attributes.
For instance, in the Adult dataset [6], females on average

have a lower annual income than males. However, one can

observe that females work less hours per week on average; see

Table I. Assume the task is to build a classifier to determine a

salary, given an individual. The previous works would correct

the decision making in such a way that males and females

would get on average the same income, say 20 K$, leading to

a reverse discrimination as it would result in male employees

being assigned a lower salary than female for the same

amount of working hours. In many real world cases, if the

difference in the decisions can be justified, it is not considered

as bad discrimination. Moreover, making the probabilities of

acceptance equal for both would lead to favoring the group

which is being deprived, in this example females.

TABLE I
SUMMARY STATISTICS OF THE ADULT DATASET [6].

hours per week annual income (K$)
female 36.4 10.9
male 42.4 30.4
all data 40.4 23.9

In this paper we take a step forward in designing discrim-

ination free classifiers and extend the discrimination problem

setting: (1) We argue that only the part of the discrimination

which is not explainable by other characteristics should be

removed. We analytically quantify how much of the difference
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in the decision making across the sensitive groups is objec-

tively explainable. We refer to the discrimination-aware clas-

sification under this condition as conditional discrimination-
aware classification. (2) With our analytical results we ad-

vance two existing discrimination handling techniques to the

conditional discrimination-aware setting; i.e., for removing the

unexplainable (bad) discrimination when one of the attributes

is considered to be explanatory for the discrimination. Our

techniques are based on pre-processing data before training a

classifier so that only the discrimination that is not explainable

is removed. These new techniques are called local massaging
and local preferential sampling. (3) In the experimental evalu-

ation we demonstrate that the new techniques remove exactly

the bad discrimination, allowing the differences in decisions

to be present as long as they are explainable. (4) Finally, we

demonstrate how our theory and techniques apply to cases

with more than one explanatory attribute.

II. RELATED WORK

Related work in non discriminatory decision making falls

into three categories. Firstly, studies in social sciences (e.g.

[7]) discuss the processes and implications of discrimination

in decision making. Such studies are beyond the scope of this

paper, in which we concentrate of the data mining perspective.

The second group of studies concerns finding quantitative

evidence of discrimination in decision making at an aggregated

level [8]–[13]. These works, however, do not address the

problem of how to design non discriminatory models for future

decision making when historical data may be discriminatory.

Finally, several papers [2]–[5] study from data mining

perspective how to build non discriminatory classifiers, when

the historical data contains discrimination. The fundamental

difference from our present study is in defining of what

is considered to be non discriminatory. The previous works

require the acceptance probabilities to be equal across the

sensitive groups. It means that if 10% of male applicants is

accepted, also 10% of female applicants should be accepted.

The previous works solve the problem by introducing a reverse

discrimination either in the training data [2], [5] or pushing

constraints into the trained classifiers [3], [4]. These works do

not consider any difference in the decisions to be explainable,

and thus tend to overshoot in removing discrimination so that

males become discriminated, as the Adult data in Table I

illustrates. We are not aware of any study formulating or

addressing this problem of conditional non discrimination

from a data mining perspective.

III. FORMAL SETTING

Formally, the setting of conditional discrimination-aware

classification is defined as follows. Let X be an instance in

p dimensional space, let y ∈ {+,−} be its label. The task

is to learn a classifier L : X → y. In addition to X , let

s ∈ {f,m} be a sensitive attribute. It is forbidden by law to

make decisions based on the sensitive attribute, e.g., gender.

A. Discrimination model

In relation to experimental findings in social sciences re-

ported in [7] we assume that discrimination happens in the

following way. The historical data originates from human

decision making, which can be considered as a classifier L.

That classifier consists of three main parts:

1) a function from attributes to a qualification score r =
G(X), where X does not include the sensitive attribute;

2) a discrimination bias function

B(s) =

{
b if s = m
−b if s = f

;

3) the final decision function y = L (G(X) +B(s)).

According to this model a decision is made in the following

way. First the qualifications of a candidate are evaluated based

on attributes in X and a preliminary score is obtained r =
G(X). The qualifications are evaluated objectively. Then the

discrimination bias is introduced by looking at the gender of

a candidate and either adding or subtracting a fixed bias from

the qualification score, to obtain r∗ = G(X) +B(s) = r± b.
The final decision is made by L(r∗). Decision making can

have two major forms: online and offline. With the offline

decision the candidates are ranked based on their scores r∗,

and n candidates that have the highest scores are accepted.

With the online decision an acceptance threshold θ is set, the

incoming candidates that have the score r∗ > θ are accepted.

This discrimination model has two important implications.

First, the decision bias is more likely to affect the individuals

that are close to the decision boundary according to their score

r. If an individual is far from the decision boundary, adding

or subtracting the discriminatory bias b does not change the

final decision. This observation is consistent with experimental

findings how discrimination happens in practice [7].

Second, traditional classifiers try to learn r∗, whereas dis-

crimination aware classification also involves decomposing r∗

into G(X) and B(s) and reverting the influence of B(s). There

may be attributes within X , however, that contribute to G(X),
but at the same time are correlated with the sensitive attribute

s, and through s, with B(s). When observing the decisions

it would seem due to correlation that the decision is using s.

Previous works have been very conservative in assuming that

all the correlation between r∗ and s is due to the discrimination

bias B(s). In this paper we refine this viewpoint.

B. Discrimination in classification

Even though discrimination happened in the historical data,

new classifiers are required not to use the sensitive information

in the decision making. Removing the sensitive attribute s
from the input space would not help, if some of the attributes in

X are not independent from s, that is P (X|m) �= P (X|f) �=
P (X). For instance,a postal code may be strongly related with

the race. If it is not allowed to use race in the decision making,

discriminatory decisions still can be made by using postal

code. That is indirect discrimination, known as the redlining.

To get rid of such discriminatory relations among attributes,

one would also need to remove the attributes that are correlated
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with s. It is not a good solution if these attributes carry the ob-

jective information about the class label, as the predictions will

become less accurate. For instance, a postal code in addition to

the racial information may carry information about real estate

prices in the neighborhood, which is objectively informative

for loan decisions. The aim is to use the objective information,

but not the sensitive information of such attributes.

The explanatory attribute is the attribute e (among X)

that is (cor)related with the sensitive attribute s, and at the

same time gives some objective information about the label

y. Both relations can be measured in data, for instance, as

the information gain about s given e, and about y given e.

Our reasoning is built upon only one explanatory attribute.

Nevertheless, this setting does not delimit taking into account

multiple explanatory attributes if they are grouped into a singe

representation, as we will demonstrate in Section VII.

In general there is no objective truth which attribute is more

reasonable to use as the explanation for discrimination. For in-

stance, when gender is the sensitive attribute, some attributes,

such as relationships (wife or husband) may not be a good

explanation, as semantically they are closely related to gender,

while different working hours may be an appropriate reason

to have different monthly salaries. What is discriminatory

and what is legal to use as an explanation depends on the

law and goals of the anti-discrimination policies. Thus, the

interpretation of the attributes needs to be fixed externally

by law or domain experts. When non-discrimination needs to

be enforced, the law sets the constraints, while we build the

techniques to incorporate those constraints into classification.

This study is built upon and valid with the assumptions:

1) the sensitive and explanatory attributes are nominated

externally by law or a domain expert;

2) the explanatory attribute is not independent from the

sensitive attribute and at the same time gives objective

information about the class label;

3) the bad discrimination contained in the historical data

is due to direct discrimination based on the sensitive at-

tribute. It means no redlining (hidden discrimination) in

the historical data; however, redlining may be introduced

as a result of training a classifier on this data.

This study is not restricted to one explanatory attribute, while

it is restricted to one binary sensitive attribute.

C. Measuring discrimination in classification

In the existing discrimination-aware classification the dis-

crimination is considered to be present if the probabilities

of acceptance for the favored community (denote m) and

the deprived community (denote f ) were not equal, i.e.,

P (y = +|s = m) �= P (y = +|s = f). Discrimination is

measured as the difference between the two probabilities

Dall = P (y = +|s = m)− P (y = +|s = f). (1)

In the previous works all the difference in acceptance between

the two groups was considered undesirable. In this study, how-

ever, we argue that some of the difference may be objectively

explainable by the explanatory attribute. Thus we can describe
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Fig. 1. Toy example with fixed probability distributions.

the difference in the probabilities as a sum of the explainable

and bad discrimination

Dall = Dexpl +Dbad. (2)

In this study we are interested to remove and thus measure

Dbad, which from Eq. (2) is

Dbad = Dall −Dexpl. (3)

For that we need to find an expression for Dexpl.

IV. EXPLAINABLE AND BAD DISCRIMINATION

For analyzing the difference between the explainable and

bad discrimination consider a toy model about admission

to a fictitious university1. Gender is the sensitive attribute;

male (m) and female (f) are the sensitive groups, against

which discrimination may occur. There are two programs:

medicine (med) and computer science (cs) with potentially

different acceptance standards. Program is considered to be

the explanatory attribute, thus the differences in acceptance

rates that can be attributed to different application rates into

the programs between male and female are acceptable. All

applicants take a test for which their score is recorded (T). The

acceptance (+) decision is made personally for each candidate

during the final interview. Figure 1 shows the setting.

There are four relations between variables in this example.

Relation (1) shows that the final decision whether to accept

partially depends on the test score. Notice that the test scores

are assumed to be independent from gender or program.

Relation (3) shows that the probability of acceptance depends

on the program. For example, the competition to medicine may

be higher, thus less applicants are accepted in total. Relation

(2) shows that the choice of program depends on gender. For

instance, the larger part of the female candidates may apply

to medicine, while more males apply to computer science.

Relation (4) shows that acceptance also depends on gender,

which is a bias in the decision making that is clearly a case

of bad discrimination. The presence bad, explanatory or both

discriminations in the data will depend on the relations (2),(3)

and (4), as we will see in the following two examples.

A. How Much Discrimination is Explainable?

With this toy model we develop several scenarios to inves-

tigate different combinations of bad and explainable discrim-

ination. Example 1 demonstrates that all the discrimination

1This model does not express our belief how admission procedures happen.
We use it for the purpose of illustration only.
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may be explainable. Suppose there are 2 000 applicants, 1 000

males and 1 000 females. Each program receives the same

number of applicants, but medicine is more popular among

females, P (med|f) = 0.8. Assume that medicine is more

competitive, P (+|med) < P (+|cs). Within each program

males and females are treated equally, as described in Table II.

However, the aggregated scores indicate that 36% of males

were accepted, but only 24% of females. The difference is

explained by the fact that more females applied to the more

competitive program. Thus, there is no bad discrimination.

TABLE II
EXAMPLE 1: NO BAD DISCRIMINATION.

medicine computer
female male female male

number of applicants 800 200 200 800
acceptance rate 20% 20% 40% 40%
accepted (+) 160 40 80 320

A similar case is reported in the Berkely study [14].

Examination of aggregate data on graduate admissions to the

University of California, Berkeley, for fall 1973 shows a clear

but misleading pattern of bias against female applicants. Over-

all 44% of males and 35% of female applicants are admitted,

thus it seems that there is 9% discrimination (Dall) towards

female applicants. However, the examination of pooled data

w.r.t. different departments, shows that there is a small but

statistically significant bias in favor of females. It means that

the overall low admission rate for females is explainable by

their tendency to apply to graduate departments that were more

difficult for applicants of either gender to enter. This case

concludes that there was no discrimination.

Example 2 presents a case with both explainable and

bad discrimination. Suppose a similar situation to Example 1

occurs, but the decision making is biased in favor of males,

P (+|m, ei) > P (+|f, ei), where ei is a program, as presented

in Table III. The decisions result in different aggregated ac-

ceptance rates for the programs: medicine 17% and computer

science 43%. It appears that in total 19% of females and 41%
of males are accepted. Our goal is to determine, which part

of this difference is explainable by program, and which part

is due to bad discrimination.

TABLE III
EXAMPLE 2: BAD DISCRIMINATION IS PRESENT.

medicine computer
female male female male

number of applicants 800 200 200 800
acceptance rate 15% 25% 35% 45%
accepted (+) 120 50 70 360

First, we need to settle what would have been the correct

acceptance rates P �(+|med) and P �(+|cs) within each pro-

gram, if males and females would have been treated equally.

Then we can find which part of the difference between the

genders is explainable, and treat the remaining part as bad

discrimination that needs to be removed. Finding the correct

acceptance rates, however, is challenging, as there is no unique

way to do it. Would all the acceptance rate have been as for

males now, all as for females, or some average of the two?
To find the correct acceptance rates we refer to the dis-

crimination model given in Section III-A. Under this model,

it is reasonable to assume that roughly the same fraction of

males benefit from the bias (those that are at most d below

the acceptance threshold), as there are females that have a

disadvantage due to the bias (those that are at most d above

the threshold), as within the programs males and females are

assumed to be equally capable. Under this assumption we need

to take the average of the acceptance probability of males

and females, resulting in P �(+|med) = 20% for medicine

and P �(+|med) = 40% for computer science. Alternatively,

if we fix the number of positive labels in the groups to the

number observed in the discriminatory data, we would get

170/1000 = 17% acceptance for medicine and 440/1000 =
44% for computer science. Following the rationale of the

discrimination model, however, these numbers are skewed and

would result in programs more popular among females to

be perceived as being more selective, leading to redlining.

This way, when decisions are automated the discrimination

would transfer from gender to program; a program with lots

of females would receive an overall lower acceptance.
Thus we assume that the acceptance thresholds would

have been fixed as the average of the historical acceptance

thresholds for males and females. This choice is motivated

by the scenario where the candidates come continuously, and

that any candidate that is sufficiently qualified would get a

position, or salary level, or a loan. Hence, there is no resource

constraint and the number of positive outputs only depends

on which instances qualify. An alternative scenario would

be to assume that all the applications are collected together

at a deadline. Then the candidates are ranked and a fixed

number of the best candidates are offered a position. Whether

to keep the number of accepted individuals fixed or to keep

the acceptance threshold fixed depends on the application

domain. For instance, in case of scholarships, job application,

university acceptance fixing the number of persons may be

more reasonable, since the applicants come in batch at the

deadline. In case of deciding to grant a credit or what salary

level to apply, fixing the threshold makes more sense (accept

all individuals that pass qualification requirements), since the

individuals come one by one. We argue that the choice of

acceptance scenario is situation dependent and hence not part

of the design of non-discrimination techniques.
Table IV illustrates calculation of the explainable part for

the discrimination towards females, as presented in Example 2.

We find the correct acceptance rate within each program as

the average of male and female acceptance. Thus, Dexpl =
36% − 24% = 12%. From the original data Dall = 41% −
19% = 22%. Thus, from Eq.(3) we get Dbad = Dall−Dexpl =
22%− 12% = 10% the data has 10% of bad discrimination.

Formally, the explainable discrimination is the difference

between acceptance of males and females

P �(+|ei) := P (+|ei,m) + P (+|ei, f)
2

, (4)
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TABLE IV
CALCULATING THE EXPLAINABLE DIFFERENCE.

medicine computer
female male female male

number of applicants 800 200 200 800
acceptance rate (Example 2) 15% 25% 35% 45%
corrected acceptance rate 20% 40%
accepted explainable 160 40 80 320

if every individual with a fixed value of the explanatory

attribute value ei would have the same chance to be accepted2,

independently of the gender:

Dexpl =

k∑
i=1

P (ei|m)P �(+|ei)−
k∑

i=1

P (ei|f)P �(+|ei)

=
k∑

i=1

(P (ei|m)− P (ei|f))P �(+|ei),

where e ∈ {e1, . . . , ek}, P (ei|m) and P (ei|f) are observed

from data, and P �
c (+|ei) is calculated as in Eq.(4). The bad

discrimination can thus be computed as the difference between

Dall (Eq. (1)) and Dexpl:

Dbad = P (+|m)− P (+|f) (5)

−
k∑

i=1

(P (ei|m)− P (ei|f))P �(+|ei).

B. Illustration of the Redlining Effect

Now that we formalized what is bad and explainable dis-

crimination, our next step is to analyze under what circum-

stances a trained classifier risks to capture bad discrimination.

For our analysis we use synthetic data that is generated

based on our toy model introduced in Figure 1. We generate

10 000 male and 10 000 female instances. The (integer) test

scores T ∈ [1, 100] are assigned uniformly for any individual.

In every experiment all probabilities in the Belief network

(given in Figure 1) are fixed, except for the probabilities

P (ei|s): for α ∈ [0, 1], we generate data with: P (med|f) = α,

P (cs|f) = 1 − α, P (med|m) = 1 − α, and P (cs|m) = α.

In this way we can study the influence of the strength of the

relationship between gender and program on the discrimina-

tion, while the total number of people applying for medicine

(and computer science respectively) remains the same. For

interpretation reasons denote β = P (med|f) − P (cs|f) =
α− (1− α) = 2α− 1, then β ∈ [−1, 1] can be interpreted as

correlation between the gender and the program. The closer |β|
is to 1, the stronger the dependency between the explainable

and sensitive attribute becomes; β = 0 means that the gender

and the program are independent. Hence, the closer β will be

to 0, the less explainable discrimination there will be.

Following the discrimination model introduced in Section

III-A we assign the label to an individual in the toy dataset as

y = δ
[(

t+ a(−1)δ[med] + b(−1)δ[f ]
)
> 70

]
, (6)

2Short notation of probabilities: P (+|ei) means P (y = +|e = ei).
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Fig. 2. Interactions between explainable and bad discrimination.

where δ[.] is a function that outputs 1 if its argument is true

and 0 otherwise, t is the test score assigned to an individual,

a is the effect to acceptance decisions due to program and b is

the effect to the acceptance due to gender discrimination bias.

We report three cases with different acceptance decisions

determined from Eq. (6) under discrimination scenarios. The

scenarios are summarized in Table V. In Case I acceptance

depends only on the program choice and the test, thus all the

discrimination is explainable. In Case II both programs have

the same acceptance thresholds, but the acceptance decision

depends on gender, thus all the discrimination is bad. Case III

is a combination of bad and explainable discrimination, the

acceptance depends on the test, the program and the gender.

TABLE V
THREE DISCRIMINATION SCENARIOS FOR ANALYSIS.

P (t) a b P (med|f)
Case I, only explainable 0.01 10 0 α
Case II, only bad 0.01 0 5 α
Case III, explainable and bad 0.01 10 5 α

Figure 2 presents the discrimination in function of β =
P (med|f)−P (cs|f). The left plots show the discriminations

Dall and Dbad in the testing data with the original labels.

The right plots show the resulting discriminations with the

predicted labels by a decision tree. A decision tree is trained

on the data from which gender has been removed, the training

data includes only the program and the test score. We analyze

the interaction between Dall and Dbad.

Case I illustrates the situation from Example 1, where all

the difference in acceptance is explainable by program. The

results indicate no bad discrimination neither in the data, nor
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in the trained classifier. The difference in acceptance, that we

observe as Dall, depends on the relation between gender and

program, it is all explainable and thus can be tolerable.

Case II illustrates an opposite situation, where all the

discrimination is bad. Therefore, we observe that Dall and

Dbad in the plots overlap. In this case the program and the

label are not directly related. When the gender attribute is

removed, the learned decision tree captures the discriminatory

decisions indirectly through program. This way the redlining
effect appears, which is strong when gender and program are

strongly dependent. If program and gender are independent

(β = 0: P (med|f) = P (med|m) = P (med) = 0.5), then

no redlining is observed (Dbad = 0). Notice that in this

extreme case the classifier can be easily made discrimination

free by removing both gender and program from the input

space, without losing any useful information.

In Case III, which corresponds to Example 2, the explain-

able and the bad discrimination act together. Some of the

difference in acceptance appears due to bad discrimination,

while some is explainable by the program choice and thus

can be tolerated. The learned decision tree shows the same bad

discrimination (Dbad) as in Case II. However, the probabilities

of acceptance for males and females are different in Case II

and Case III. Dall in Case III becomes negative for β < 0. We

can see that if very few females apply to medicine (P (med|f)
is close to zero), which is more competitive program, then

Dall < 0 indicates that females are favored, while in fact

they are deprived, as 10% of bad discrimination is present

(Dbad �= 0). This case illustrates the Simpson’s paradox [15],

in which a relation present in different groups is reversed

when the groups are combined. Thus, to assess the true bad

discrimination we need to be able to measure Dbad, and we

propose the methodology to measure it in this study.

To sum, the experiments demonstrate the following effects:

• removing the sensitive attribute does not remove discrim-

ination if the sensitive attribute is (cor)related with other

attributes (Cases II and III);

• if an input attribute is (cor)related with the sensitive at-

tribute and the label, and is nominated as explanatory, not

all the difference in acceptance is bad and removing all

the difference would result in the reverse discrimination;

• Case III demonstrates that there is a need for advanced

training strategies to remove discrimination, and at the

same time to preserve the objective information that could

be captured by one and the same variable.

V. HOW TO REMOVE BAD DISCRIMINATION WHEN

TRAINING A CLASSIFIER?

As we observed in the synthetic examples, a naive approach

to remove the sensitive attribute before training will not work

if any other attribute is (cor)related with the sensitive attribute.

Removing the explanatory attribute would help to remove bad

discrimination, but the accuracy will suffer, as the explanatory

attribute at the same time bears the objective information

about the label. For instance, in our example the program

objectively explains the difference in decisions as acceptance

rates differ for different programs. Thus in real life scenarios

more involved strategies to remove discrimination are required.

In order to ensure that the built classifier is discrimination

free, one needs to control both

1) Pc(+|ei,m) = Pc(+|ei, f), where Pc is the probability

assigned by the classifier, and

2) Pc(+|ei) = P �(+|ei), where P �(+|ei) is defined in

Eq. (4). This means that the prediction is consistent with

the original distribution of the data.

As discussed before, the first condition in isolation is insuffi-

cient due to the redlining effect. A classifier that only takes this

condition into account would underestimate the positive class

probability of a group in which females are over-represented.

We distinguish two main strategies that could make classi-

fiers free from bad discrimination. The first strategy is to re-

move the relation between the sensitive attribute and the class

label from the training data, which is the source of the bad

discrimination (relation (4) in Figure 1). Note that removing

the relation is not the same as removing the sensitive attribute

itself, it means making P (+|med, f) = P (+|med,m) =
P �(+|med). We can achieve that, for instance, by modifying

the original labels of the training data.

The alternative strategy is to split the data into smaller

groups based on the explanatory attribute. That would re-

move the relation between the sensitive and the explanatory

attributes (relation (2) in Figure 1). Then individual classifiers

can be trained for each group. This strategy would also require

to correct the training labels in each groups, otherwise the

redlining effect will manifest. In addition, it would signifi-

cantly reduce the data available for training a classifier, which

may result in much lower accuracy than the global model.

Thus, in this study we adopt the first type of strategy.

In this work we propose two new techniques local mas-

saging and local preferential sampling that modify the la-

bels in the historical data so that the historical data satis-

fies the following conditional non-discrimination constraints:

P ′(+|ei, f) = P ′(+|ei,m) = P ′�(+|ei) and P �(+|ei) is

fixed so that no redlining is introduced (P ′ denotes the

probability in the modified data). First we need to fix the

desired probabilities of acceptance P �(+|ei), which would

have been correct. We set P �(+|ei) to be the average of

male and female acceptance rates, Eq. (4), as motivated in

Section IV-A. After finding P �(+|ei) for all ei ∈ dom(e),
the remaining part is to change the labels of the training data

so that P ′(+|ei, f) = P ′(+|ei,m) = P �(+|ei). We anticipate

that the classifiers trained on the modified data, which does not

contain bad discrimination, will produce outputs that would

satisfy Pc(+|ei, f) = Pc(+|ei,m) = P �(+|ei) (Pc denotes

the probability in the outputs of a classifier). The role of the

proposed techniques is using our theory on conditional non-

discrimination (Section IV) to decide which instances in the

historical data need to be modified and in what way.

A. Local Massaging

The local massaging for every partition in the training data

induced by the explanatory attribute will modify the values of
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labels until both P ′(+|m, ei) and P ′(+|f, ei) become equal to

P �(+|ei). The discrimination model in Section III-A implies

that discrimination is more likely to affect the objects that

are closer to the decision boundary. To this end, massaging

identifies the instances that are close to the decision boundary

and changes the values of their labels to the opposite. For

that purpose individuals need to be ordered according to their

probability of acceptance. To be able to order we need to con-

vert the original binary labels (accept or reject) to real valued

probabilities of acceptance. For that we learn an internal ranker

(a classifier that outputs the posterior probabilities).

Suppose females have been discriminated as in our univer-

sity admission model and the discrimination is reflected in the

historical data. The local massaging will identify a number

of females that were almost accepted, and make their labels

positive, and identify a number of males that were very likely,

but have not been rejected, and make their labels negative.

This technique is related to the massaging proposed in [4],

while, given the new theory, now it can handle the explainable

discrimination. Algorithm 1 gives the pseudo-code.

Algorithm 1: Local massaging

input : dataset (X, s, e,y)
output: modified labels ŷ

PARTITION (X, e) (Algorithm 3);

for each partition X(i) do
learn a ranker Hi : X

(i) → y(i);
rank males using Hi;

relabel DELTA (male) males that are the closest

to the decision boundary from + to − (Algorithm 4);

rank females using Hi;

relabel DELTA (female) females that are the

closest to the decision boundary from − to +
end

B. Local Preferential Sampling

The preferential sampling technique does not modify the

training instances or labels, instead it modifies the composition

of the training set. It deletes and duplicates training instances

so that the labels of new training set contain no discrimi-

nation and satisfy the criteria P ′(+|m, ei) = P ′(+|f, ei) =
P �(+|ei). Following the discrimination model where the dis-

crimination is more likely to affect the objects that are closer

to the decision boundary, the preferential sampling deletes

the ‘wrong’ instances that are close to the decision boundary

and duplicates the instances that are ‘right’ and close to the

boundary. To select the instances they are ordered according

to their probability of acceptance using a ranker learned on

each group in the same way as in the local massaging.

In the university example the local preferential sampling

will delete a number of males that were almost rejected and

duplicate the males that were almost accepted. It will also

delete a number of females that were almost accepted and

duplicate the females that were almost rejected.

Algorithm 2: Local preferential sampling

input : dataset (X, s, e,y)
output: resampled dataset (a list of instances)

PARTITION (X, e) (see Algorithm 3);

for each partition X(i) do
learn a ranker Hi : X

(i) → y(i);
rank males using Hi;

delete 1
2DELTA (male) (see Algorithm 4) males

+ that are the closest to the decision boundary;

duplicate 1
2DELTA (male) males − that are the

closest to the decision boundary;

rank females using Hi;

delete 1
2DELTA (female) females − that are the

closest to the decision boundary;

duplicate 1
2DELTA (female) females + that are

the closest to the decision boundary;

end

Algorithm 3: subroutine PARTITION(X, e)

find all unique values of e: {e1, e2, . . . , ek};
for i = 1 to k do

make a group X(i) = {X : e = ei};
end

This technique is related to the preferential sampling [5],

while, given the new theory, now it can handle the explainable

discrimination. Algorithm 2 gives the pseudo-code.

VI. EXPERIMENTAL EVALUATION

We evaluate the performance of the proposed local dis-

crimination handling techniques in line with their global

counterparts. The objective is to minimize the absolute value

of the bad discrimination while keeping the accuracy as high

as possible. It is important not to overshoot and end up with

a reverse discrimination. The goals of our experiments are:

1) to present a motivation for conditional discrimination-

aware classification research,

2) to explore how well the proposed techniques remove bad

discrimination as compared to the existing techniques for

global non-discrimination, and

3) to analyze the effects of removing discrimination on the

final classification accuracy.

We explore the performance of the methods that aim to remove

the relation between the sensitive attribute and the label. We

Algorithm 4: subroutine DELTA(gender)

return Gi|p(+|ei, gender)− p�(+|ei)|,
where p�(+|ei) comes from (Eq. (4)),

Gi is the number of gender people in X(i);
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test the local massaging and the local preferential sampling3.

A. Data

We use two real datasets. In the Adult dataset [6], the task

is to classify individuals into high and low income classes. We

use a uniform sample of 15 696 instances, which are described

by 13 attributes (we discretize the 6 numeric attributes) and

a class label. Gender is the sensitive attribute, income is the

label. We repeat our experiments several times, where any of

the other attributes in turn is selected as explanatory. Figure 3

(left) shows the discrimination in the dataset. The horizontal

axis denotes the index of the explanatory attribute.

In the Adult dataset a number of attributes are weakly

related with gender (such as workclass, education, occupation,

race, capital loss, native country). Therefore, nominating any

of those attributes as explanatory would not explain much of

the discrimination. For instance, we know from biology that

race and gender are independent. Thus, race cannot explain

the discrimination on gender; that discrimination is either bad

or it is due to some other attributes. Indeed, we observe from

the plot that all the discrimination is bad, when treating race

(attribute #7) as explanatory.
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Fig. 3. Discrimination in the datasets.

On the other hand, we observe that the relationship (at-

tribute #6) explains a lot of Dall. Whether relationship is

an acceptable argument to justify differences in income is

for lawyers to determine. Judging subjectively, the values of

this attribute ‘wife and husband clearly capture the gender

information. From a data mining perspective, if we treat it as

acceptable, a large part of the discrimination gets explained.

Age, and working hours per week are other examples of

explanatory attributes. They justify some of the discrimination.

Intuitively, these reasons are perfectly valid for having differ-

ent income, so it makes sense to treat them as explanatory.

Another dataset that we use is the Dutch Census of
2001 [16], that represents aggregated groups of inhabitants

of the Netherlands. We formulate a binary classification task

to classify the individuals into high income and low income
professions, using occupation as the class label. Individuals

are described by 11 categorical attributes. After removing the

records of under-aged people, several professions in the middle

3All datasets and the code of all implementations of our experiments are
available at https://sites.google.com/site/conditionaldiscrimination/.

level and people with unknown professions our dataset consists

of 60 420 instances. Gender is treated as the sensitive attribute.

Figure 3 (right) presents the discrimination contained in this

data. The difference between the all and the bad discrimination

is much less than in the Adult data. Here many attributes

are not that strongly correlated with gender. Simply removing

the sensitive attribute should therefore perform reasonably

well. Nevertheless, education level, age and economic activity

present cases for conditional non-discrimination, thus we

explore this dataset in our experiments.

B. Motivation Experiments

To give a motivation for our new approach we demonstrate

that the existing techniques do not solve the conditional non

discrimination problem.

1) Removing the Sensitive Attribute: First we test a baseline

approach, which removes the sensitive attribute from the

training data. We learn a decision tree with the J48 classifier

(Weka implementation) on all the data except the gender

attribute, treated as sensitive. Figure 4 shows the resulting

discriminations, when the learned tree is evaluated using 10-

fold cross validation. We can clearly observe the redlining
effect, especially in the Adult data; even though the sensitive

attribute is removed, the bad discrimination still manifests.
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Fig. 4. Removing the sensitive attribute.

2) Global Techniques: Next we investigate to what extent

the two existing global techniques [2], [5] remove bad discrim-

ination. Global massaging modifies the labels of the training

data to make the probabilities of acceptance equal for the

two sensitive groups. Global preferential sampling, resamples

the training data so that non-discrimination constraints for the

label distribution are satisfied. Both methods aim at making

Dall equal to 0, which is not the same as removing Dbad and

will actually reverse the discrimination, as can be seen from

Figure 5. The global techniques do not take into account, that

the distributions of the sensitive groups may differ and thus

some of the differences in probabilities are explainable.

As expected, the massaging and the preferential sampling

techniques work well for removing all discrimination, e.g.

for the Adult data after massaging Dall = 0. But, if we

treat marital status as the explanatory attribute, these results

introduce a reverse bad discrimination. The same, but on a

smaller scale, holds for several other explanatory attributes,

e.g. hours per week and age. For the Dutch Census data, both

techniques overshoot if conditioned on education level.
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Fig. 5. Discrimination with the global techniques.

These results confirm that a reverse bad discrimination is

introduced when global discrimination handling techniques are

applied raising the necessity for local methods.

3) When are the Local Techniques Essential?: The existing

techniques fail the most when the difference between Dall and

Dbad in the data is large. For instance, Figure 3 shows sharp

negative peaks when marital status or relationship act as the

explanatory attributes in the Adult data. In such cases, the

need for the special techniques that can handle conditional

discrimination is essential.

A large difference between Dall and Dbad implies that a

large part of the difference in the decisions is due to the

explanatory attribute. We quantify the dependencies between

class on the one hand, and sensitive and explanatory attributes

on the other hand by the following information gains:

G(y, ei) = H(y)−H(y|ei), and

G(s, ei) = H(s)−H(s|ei).
H(.) denotes entropy, s the sensitive attribute, y the label

and ei the explanatory attribute. The information gains for the

Adult and the Dutch census datasets are plotted in Figure 6.

The figure confirms the intuition that the stronger the relation
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Fig. 6. Relations between sensitive, explanatory attributes and labels.

with the explanatory attribute (higher information gain) the

larger the share of the total discrimination that is explainable.

Recall Figure 3 for the discriminations.

C. Non-discrimination Using Local Techniques

Let us analyze how the proposed local techniques handle

discrimination. We expect them to remove exactly the bad

discrimination and nothing more. We test the performance with

decision trees (J48) via 10-fold cross validation.

Figure 7 shows the resulting discrimination after applying

the local massaging and the local preferential sampling. Both
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local techniques perform well on the Adult data. Bad dis-

crimination is reduced to nearly zero, except for relationship

as explanatory attribute when massaging is applied to the

Adult dataset. Our techniques do not produce the reverse

discrimination as, e.g., global massaging does.

The proposed solutions do not perform that well with the

Dutch census data, as the sensitive attribute is not very strongly

correlated with any other attribute in the dataset, because

the local techniques are primarily designed to handle high

correlations with the sensitive attribute that induce redlining.

Note that when the base classifier can also serve as an

accurate ranker, there is a simpler local approach to employ

our conditional discrimination theory and measure. Different

rankers can be learned for males and females and used directly

for classification by setting the thresholds to p�(+|ei) as in Eq.

(4). In the specific case of J48 as a ranker the results are worse

than the results of the generic techniques, thus left out. This

happens as J48 is not inherited a smooth ranker.

D. Accuracy with the Local Techniques

When classifiers become discrimination free, they may lose

some accuracy, as measured on the historical data. We analyze

the resulting accuracies after applying the local massaging and

the local preferential sampling. Figure 8 presents the testing

accuracy of a decision tree (J48) when the original historical

data with all the attributes is used for training, and the accuracy

after our local techniques have been applied. The accuracy of
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Fig. 8. Accuracy with the local techniques.

the local techniques decreases as the evaluation is carried out

on the original data that contains discrimination. Nevertheless,

the absolute accuracy remains high; it drops by 5% at most.

Our experiments demonstrate that the local massaging and the

local preferential sampling classify future data with reasonable

accuracy and maintain low discrimination.
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VII. HANDLING MULTIPLE EXPLANATORY ATTRIBUTES

In this section we demonstrate how our theory and tech-

niques extend for handling multiple explanatory attributes

that may be required to be taken into account together (e.g.

working hours and experience in determining a salary).

We create a new attribute that describes a group to which

a person belongs and treat that attribute as explanatory when

applying the theory and techniques proposed in this study. A

straightforward way to do that is to create a separate group

for every unique combination of the values of explanatory

attributes. For instance, group 1: long hours and no experience,

group 2: long hours and large experience, group 3: average

hours and no experience, etc. In reality, however, this approach

is not applicable, since with growing numbers of explanatory

attributes, it becomes increasingly less likely that two instances

will agree on all of them. This is a problem, since if we

treat every instance as unique, then there we observe no

discrimination, as there is nothing to compare an instance with.

Thus we need to form large enough groups to have a pool

for comparison within each group. In order not to introduce

the redlining the grouping procedure needs to be independent

from the sensitive attribute and the label. The resulting groups

themselves are expected to be correlated with the sensitive

attribute and the label, as the explanatory attributes are. The

main intuition behind grouping is to monitor that individuals

that are similar to each other in terms of explanatory attributes

(fall into one group) are treated in a similar way in decision

making regardless of the gender.

In this study we give an illustration of a grouping approach,

while optimal grouping strategies are out of the scope of the

present paper and is the subject of further investigation. We

report the results of the following experiment on the Adult

dataset. In order to form the groups we run the k-means

clustering on the input data. To prevent the grouping procedure
to be influenced by the sensitive attribute indirectly we omit

from the clustering input space the attributes that are excep-

tionally highly correlated with the gender; we omit gender

itself, relationship, marital status, occupation and income.

We compare the bad discrimination Dbad in the outputs

of a decision tree (J48) trained on the original data and on

the data that has been preprocessed using the global and

our local techniques (massaging and preferential sampling),

discussed in Section V. We test the performance via 10-fold

cross validation. Figure 9 presents the resulting bad discrimi-
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Fig. 9. Discrimination and accuracy with multiple explanatory attributes.

nation and accuracies. We observe that the global techniques

overshoot and introduce the reverse discrimination, while our

local techniques remove exactly the bad discrimination and

they preserve reasonable prediction accuracy.

VIII. CONCLUSION

In this paper we extended the discrimination-aware clas-

sification paradigm to the presence of explanatory attributes

that are correlated with the sensitive attribute. In such a case,

as we demonstrated, not all discrimination can be considered

bad and the existing techniques tend to overshoot and start

a reverse discrimination. Therefore, we introduced a new

way of measuring discrimination, by explicitly splitting it up

into explainable and bad discrimination. Local alternatives

of the massaging and preferential sampling were introduced

and experimentally evaluated. The experiments demonstrated

the effectiveness of the new local techniques, especially in

cases when the sensitive attribute is highly correlated with the

explanatory attribute.
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