Different kinds of Assortative mixing

Scribed by Bivas Mitra Lecture delivered by Prof Niloy Ganguly

1 Application of synthesis algorithm

Synthesis of a random network following a given mixing pattern has many important significance. Assume that we study the airlines of USA and derive the mixing pattern of different USA airports. Now we want to create a new airlines system in Africa which will have similar property as USA airlines. In this case, using the assortative mixing table derived from USA airlines system, we synthesize a new network which connects various airports of Africa. That means we extract the mixing pattern from one environment and apply it to another environment.

2 Other kinds of assortative mixing

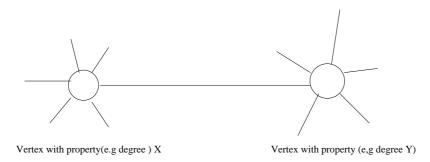


Figure 1: Assortative mixing depending on the property of the vertex

Associativity can depend on vertex property other than the simple enumerative properties like race. We define e_{ij} be the fraction of edges in our network that connect a vertex of property x to another vertex with property y. The matrix e_{xy} must satisfy sum rules of the form

$$\sum_{xy} e_{xy} = 1, \sum_{y} e_{xy} = a_x, \sum_{x} e_{xy} = b_y$$
(1)

where a_x and b_y are respectively the fraction of edges that start and end at virtices with property x and y. In this case the appropriate defination for the assistative coefficient is

$$r = \frac{\sum_{xy} xy(e_{xy} - a_x b_y)}{\sigma_a \sigma_b} \tag{2}$$

where σ_a and σ_b are the standard deviations of the distributions a_x and b_y . It can be noted that r is actually Pearson's correlation coefficient for the quantities x and y. It takes values in the range $-1 \le r \le 1$ with r = 1 indicating perfect assortative mixing and r = 0 indicating no correlation between x and y and r = -1 indicating perfect disassortative mixing i.e. perfect anti-correlation between x and y.

2.1 Mixing by Vertex Degree

Here we consider the one particular case of mixing that of mixing by vertex degree. Let us define e_{jk} to be the fraction of edges in a network that connect a vertex of degree j to degree k. in fact we define j and k to be the "excess degrees" of the two vertices i.e. the number of edges incident on them less the one edge that we are looking at present. In other words, j and k are one less than the total degrees of the two vertices. If the degree distribution of the network as a whole is p_k then distribution of excess degree of the vertex at the end of the randomly chosen edge is

$$q_k = \frac{(k+1)p_{k+1}}{z}$$
(3)

where $z = \sum_{k} k p_k$ is the mean degree. Then one can define the assortativity coefficient to be

$$r = \frac{\sum_{jk} jk(e_{jk} - q_j q_k)}{\sigma_q^2} \tag{4}$$

where σ_q is the standard deviation of the distribution q_k . On a directed or similar network, where the ends of an edge are not same and $e_j k$ is asymmetric, this generalizes to

$$r = \frac{\sum_{jk} jk(e_{jk} - q_j^a q_k^b)}{\sigma_a \sigma_b} \tag{5}$$

where σ_a and σ_b are standard deviation of the distributions q_k^a and q_k^b for the two types of ends.

3 Real World Example

Network	type	size n	assortativity r
Physics Co-authorship	undirected	52909	.363
Biology co-authorship	undirected	1520251	.127
mathematics co-authorship	undirected	253339	.120
film actor collaborations	undirected	449913	.208
company directors	undirected	7673	.092
email address books	directed	16881	.092
Internet	undirected	10697	189
WWW	directed	269504	067
software dependencies	directed	3162	016
protein interactions	undirected	2115	156
metabolic network	undirected	765	240

Above table shows the values of r measured for a variety of different real world networks. The networks shown are mainly social (different co-authorship network, film acot, compant directors collaboration), technological(Internet, WWW) and biological(protein interaction, metabolic networks) networks. a particular feature of the table is that the values of r for the social networks are all positive, indicating assortative mixing by degree while those for the technological and biological networks are all negative indicating disassortative mixing.

4 References

1. "Mixing patterns and community structure in networks", M. E. J. Newman and M. Girvan, in Statistical Mechanics of Complex Networks, R. Pastor-Satorras, J. Rubi, and A. Diaz-Guilera (eds.), Springer, Berlin (2003).

2."Assortative mixing in networks", M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002).