arXiv:0712.2716v1 [physics.soc-ph] 17 Dec 2007

Community Structure in Graphs

Santo Fortunato?, Claudio Castellano®

® Complex Networks Lagrange Laboratory (CNLL), ISI Foundation,
Torino, Italy

b SMC, INFM-CNR and Dipartimento di Fisica, “Sapienza” Uni-
versita di Roma, P. le A. Moro 2, 00185 Roma, Italy

Abstract

Graph vertices are often organized into groups that seem to live fairly in-
dependently of the rest of the graph, with which they share but a few edges,
whereas the relationships between group members are stronger, as shown by
the large number of mutual connections. Such groups of vertices, or commu-
nities, can be considered as independent compartments of a graph. Detecting
communities is of great importance in sociology, biology and computer science,
disciplines where systems are often represented as graphs. The task is very
hard, though, both conceptually, due to the ambiguity in the definition of com-
munity and in the discrimination of different partitions and practically, because
algorithms must find “good” partitions among an exponentially large number of
them. Other complications are represented by the possible occurrence of hierar-
chies, i.e. communities which are nested inside larger communities, and by the
existence of overlaps between communities, due to the presence of nodes belong-
ing to more groups. All these aspects are dealt with in some detail and many
methods are described, from traditional approaches used in computer science
and sociology to recent techniques developed mostly within statistical physics.

1 Introduction

The origin of graph theory dates back to Euler’s solution [1] of the puzzle of
Konigsberg’s bridges in 1736. Since then a lot has been learned about graphs and
their mathematical properties [2]. In the 20th century they have also become
extremely useful as representation of a wide variety of systems in different areas.
Biological, social, technological, and information networks can be studied as
graphs, and graph analysis has become crucial to understand the features of
these systems. For instance, social network analysis started in the 1930’s and
has become one of the most important topics in sociology [3, [4]. In recent
times, the computer revolution has provided scholars with a huge amount of
data and computational resources to process and analyse these data. The size
of real networks one can potentially handle has also grown considerably, reaching

http://arXiv.org/abs/0712.2716v1

Figure 1: A simple graph with three communities, highlighted by the dashed
circles.

millions or even billions of vertices. The need to deal with such a large number
of units has produced a deep change in the way graphs are approached [5]-[9].

Real networks are not random graphs. The random graph, introduced by
P. Erdos and A. Rényi [10], is the paradigm of a disordered graph: in it, the
probability of having an edge between a pair of vertices is equal for all possible
pairs. In a random graph, the distribution of edges among the vertices is highly
homogeneous. For instance, the distribution of the number of neighbours of
a vertex, or degree, is binomial, so most vertices have equal or similar degree.
In many real networks, instead, there are big inhomogeneities, revealing a high
level of order and organization. The degree distribution is broad, with a tail
that often follows a power law: therefore, many vertices with low degree coexist
with some vertices with large degree. Furthermore, the distribution of edges
is not only globally, but also locally inhomogeneous, with high concentrations
of edges within special groups of nodes, and low concentrations between these
groups. This feature of real networks is called community structure and is the
topic of this chapter. In Fig.[Ila schematic example of a graph with community
structure is shown.

Communities are groups of vertices which probably share common properties
and/or play similar roles within the graph. So, communities may correspond
to groups of pages of the World Wide Web dealing with related topics [I1], to
functional modules such as cycles and pathways in metabolic networks [12} T3],
to groups of related individuals in social networks [14] [I5], to compartments in
food webs [16] [I7], and so on.

Community detection is important for other reasons, too. Identifying mod-
ules and their boundaries allows for a classification of vertices, according to their
topological position in the modules. So, vertices with a central position in their

clusters, i.e. sharing a large number of edges with the other group partners, may
have an important function of control and stability within the group; vertices ly-
ing at the boundaries between modules play an important role of mediation and
lead the relationships and exchanges between different communities. Such clas-
sification seems to be meaningful in social [I8]-[20] and metabolic networks [12].
Finally, one can study the graph where vertices are the communities and edges
are set between modules if there are connections between some of their vertices
in the original graph and/or if the modules overlap. In this way one attains a
coarse-grained description of the original graph, which unveils the relationships
between modules. Recent studies indicate that networks of communities have
a different degree distribution with respect to the full graphs [I3]; however, the
origin of their structures can be explained by the same mechanism [21].

The aim of community detection in graphs is to identify the modules only
based on the topology. The problem has a long tradition and it has appeared
in various forms in several disciplines. For instance, in parallel computing it is
crucial to know what is the best way to allocate tasks to processors so as to
minimize the communications between them and enable a rapid performance
of the calculation. This can be accomplished by splitting the computer cluster
into groups with roughly the same number of processors, such that the number
of physical connections between processors of different groups is minimal. The
mathematical formalization of this problem is called graph partitioning. The first
algorithms for graph partitioning were proposed in the early 1970’s. Clustering
analysis is also an important aspect in the study of social networks. The most
popular techniques are hierarchical clustering and k-means clustering, where
vertices are joined into groups according to their mutual similarity.

In a seminal paper, Girvan and Newman proposed a new algorithm, aiming
at the identification of edges lying between communities and their successive
removal, a procedure that after a few iterations leads to the isolation of mod-
ules [14]. The intercommunity edges are detected according to the values of a
centrality measure, the edge betweenness, that expresses the importance of the
role of the edges in processes where signals are transmitted across the graph
following paths of minimal length. The paper triggered a big activity in the
field, and many new methods have been proposed in the last years. In partic-
ular, physicists entered the game, bringing in their tools and techniques: spin
models, optimization, percolation, random walks, synchronization, etc., became
ingredients of new original algorithms. Earlier reviews of the topic can be found
in Refs. [22] 23].

Section 2]is about the basic elements of community detection, starting from
the definition of community. The classical problem of graph partitioning and the
methods for clustering analysis in sociology are presented in Sections [B] and @]
respectively. Section [l is devoted to a description of the new methods. In
Section[B]the problem of testing algorithms is discussed. Section[flintroduces the
description of graphs at the level of communities. Finally, Section B highlights
the perspectives of the field and sorts out promising research directions for the
future.

This chapter makes use of some basic concepts of graph theory, that can be

found in any introductory textbook, like [2]. Some of them are briefly explained
in the text.

2 Elements of Community Detection

The problem of community detection is, at first sight, intuitively clear. However,
when one needs to formalize it in detail things are not so well defined. In the
intuitive concept some ambiguities are hidden and there are often many equally
legitimate ways of resolving them. Hence the term “Community Detection”
actually indicates several rather different problems.

First of all, there is no unique way of translating into a precise prescription
the intuitive idea of community. Many possibilities exist, as discussed below.
Some of these possible definitions allow for vertices to belong to more than
one community. It is then possible to look for overlapping or nonoverlapping
communities. Another ambiguity has to do with the concept of community
structure. It may be intended as a single partition of the graph or as a hierarchy
of partitions, at different levels of coarse-graining. There is then a problem of
comparison. Which one is the best partition (or the best hierarchy)? If one
could, in principle, analyze all possible partitions of a graph, one would need
a sensible way of measuring their “quality” to single out the partitions with
the strongest community structure. It may even occur that one graph has no
community structure and one should be able to realize it. Finding a good
method for comparing partitions is not a trivial task and different choices are
possible. Last but not least, the number of possible partitions grows faster
than exponentially with the graph size, so that, in practice, it is not possible
to analyze them all. Therefore one has to devise smart methods to find 'good’
partitions in a reasonable time. Again, a very hard problem.

Before introducing the basic concepts and discussing the relevant questions
it is important to stress that the identification of topological clusters is possible
only if the graphs are sparse, i.e. if the number of edges m is of the order of the
number of nodes n of the graph. If m > n, the distribution of edges among the
nodes is too homogeneous for communities to make sense.

2.1 Definition of Community

The first and foremost problem is how to define precisely what a community is.
The intuitive notion presented in the Introduction is related to the comparison of
the number of edges joining vertices within a module (“intracommunity edges”)
with the number of edges joining vertices of different modules (“intercommunity
edges”). A module is characterized by a larger density of links “inside” than
“outside”. This notion can be however formalized in many ways. Social net-
work analysts have devised many definitions of subgroups with various degrees
of internal cohesion among vertices [3, [4]. Many other definitions have been
introduced by computer scientists and physicists. In general, the definitions can
be classified in three main categories.

e Local definitions. Here the attention is focused on the vertices of the
subgraph under investigation and on its immediate neighbourhood, disre-
garding the rest of the graph. These prescriptions come mostly from social
network analysis and can be further subdivided in self-referring, when one
considers the subgraph alone, and comparative, when the mutual cohesion
of the vertices of the subgraph is compared with their cohesion with the
external neighbours. Self-referring definitions identify classes of subgraphs
like cliques, n-cliques, k-plezes, etc.. They are mazimal subgraphs, which
cannot be enlarged with the addition of new vertices and edges without
losing the property which defines them. The concept of clique is very
important and often recurring when one studies graphs. A clique is a
maximal subgraph where each vertex is adjacent to all the others. In the
literature it is common to call cliques also non-maximal subgraphs. Tri-
angles are the simplest cliques, and are frequent in real networks. Larger
cliques are rare, so they are not good models of communities. Besides,
finding cliques is computationally very demanding: the Bron-Kerbosch
method [24] runs in a time growing exponentially with the size of the
graph. The definition of clique is very strict. A softer constraint is repre-
sented by the concept of n-clique, which is a maximal subgraph such that
the distance of each pair of its vertices is not larger than n. A k-plex is
a maximal subgraph such that each vertex is adjacent to all the others
except at most k of them. In contrast, a k-core is a maximal subgraph
where each vertex is adjacent to at least k vertices within the subgraph.
Comparative definitions include that of LS set, or strong community, and
that of weak community. An LS set is a subgraph where each node has
more neighbours inside than outside the subgraph. Instead, in a weak
community, the total degree of the nodes inside the community exceeds
the external total degree, i.e. the number of links lying between the com-
munity and the rest of the graph. LS sets are also weak communities, but
the inverse is not true, in general. The notion of weak community was
introduced by Radicchi et al. [25].

e Global definitions. Communities are structural units of the graph, so it
is reasonable to think that their distinctive features can be recognized if
one analyses a subgraph with respect to the graph as a whole. Global
definitions usually start from a null model, i.e. a graph which matches
the original in some of its topological features, but which does not display
community structure. After that, the linking properties of subgraphs of
the initial graph are compared with those of the corresponding subgraphs
in the null model. The simplest way to design a null model is to introduce
randomness in the distribution of edges among the vertices. A random
graph a la Erdos-Rényi, for instance, has no community structure, as any
two vertices have the same probability to be adjacent, so there is no pref-
erential linking involving special groups of vertices. The most popular
null model is that proposed by Newman and Girvan and consists of a
randomized version of the original graph, where edges are rewired at ran-

dom, under the constraint that each vertex keeps its degree [26]. This null
model is the basic concept behind the definition of modularity, a function
which evaluates the goodness of partitions of a graph into modules (see
Section 2:2)). Here a subset of vertices is a community if the number of
edges inside the subset exceeds the expected number of internal edges that
the subset would have in the null model. A more general definition, where
one counts small connected subgraphs (motifs), and not necessarily edges,
can be found in [27]. A general class of null models, including modularity,
has been designed by Reichardt and Bornholdt [28§].

o Definitions based on vertexr similarity. In this last category, communities
are groups of vertices which are similar to each other. A quantitative cri-
terion is chosen to evaluate the similarity between each pair of vertices,
connected or not. The criterion may be local or global: for instance one
can estimate the distance between a pair of vertices. Similarities can be
also extracted from eigenvector components of special matrices, which are
usually close in value for vertices belonging to the same community. Sim-
ilarity measures are at the basis of the method of hierarchical clustering,
to be discussed in Sectiondl The main problem in this case is the need to
introduce an additional criterion to “close” the communities.

It is worth remarking that, in spite of the wide variety of definitions, in many
detection algorithms communities are not defined at all, but are a byproduct of
the procedure. This is the case of the divisive algorithms described in Section[5.1]
and of the dynamic algorithms of Section (.41

2.2 Evaluating Partitions: Quality Functions

Strictly speaking, a partition of a graph in communities is a split of the graph
in clusters, with each vertex assigned to only one cluster. The latter condition
may be relaxed, as shown in Section 2.4l Whatever the definition of community
is, there is usually a large number of possible partitions. It is then necessary
to establish which partitions exhibit a real community structure. For that, one
needs a quality function, i.e. a quantitative criterion to evaluate how good a
partition is. The most popular quality function is the modularity of Newman
and Girvan [26]. It can be written in several ways, as

1 kik;
Q=3m Z <A”‘ " om) e Y

where the sum runs over all pairs of vertices, A is the adjacency matrix, k; the
degree of vertex i and m the total number of edges of the graph. The element
A;; of the adjacency matrix is 1 if vertices ¢ and j are connected, otherwise it
is 0. The d-function yields one if vertices ¢ and j are in the same community,
zero otherwise. Because of that, the only contributions to the sum come from
vertex pairs belonging to the same cluster: by grouping them together the sum

over the vertex pairs can be rewritten as a sum over the modules
n 2
ol ds }
= _— . 2
@ Z [m (2m) @

Here, n,, is the number of modules, I, the total number of edges joining vertices
of module s and d, the sum of the degrees of the vertices of s. In Eq.[2 the first
term of each summand is the fraction of edges of the graph inside the module,
whereas the second term represents the expected fraction of edges that would be
there if the graph were a random graph with the same degree for each vertex.
In such a case, a vertex could be attached to any other vertex of the graph,
and the probability of a connection between two vertices is proportional to the
product of their degrees. So, for a vertex pair, the comparison between real and
expected edges is expressed by the corresponding summand of Eq. [l

Eq. Blembeds an implicit definition of community: a subgraph is a module if
the number of edges inside it is larger than the expected number in modularity’s
null model. If this is the case, the vertices of the subgraph are more tightly
connected than expected. Basically, if each summand in Eq. 2l is non-negative,
the corresponding subgraph is a module. Besides, the larger the difference
between real and expected edges, the more “modular” the subgraph. So, large
positive values of @) are expected to indicate good partitions. The modularity
of the whole graph, taken as a single community, is zero, as the two terms of the
only summand in this case are equal and opposite. Modularity is always smaller
than one, and can be negative as well. For instance, the partition in which each
vertex is a community is always negative. This is a nice feature of the measure,
implying that, if there are no partitions with positive modularity, the graph has
no community structure. On the contrary, the existence of partitions with large
negative modularity values may hint to the existence of subgroups with very
few internal edges and many edges lying between them (multipartite structure).

Modularity has been employed as quality function in many algorithms, like
some of the divisive algorithms of Section Bl In addition, modularity opti-
mization is itself a popular method for community detection (see Section [5.2)).
Modularity also allows to assess the stability of partitions [29] and to transform
a graph into a smaller one by preserving its community structure [30].

However, there are some caveats on the use of the measure. The most im-
portant concerns the value of modularity for a partition. For which values one
can say that there is a clear community structure in a graph? The question is
tricky: if two graphs have the same type of modular structure, but different sizes,
modularity will be larger for the larger graph. So, modularity values cannot be
compared for different graphs. Moreover, one would expect that partitions of
random graphs will have modularity values close to zero, as no community struc-
ture is expected there. Instead, it has been shown that partitions of random
graphs may attain fairly large modularity values, as the probability that the
distribution of edges on the vertices is locally inhomogeneous in specific realiza-
tions is not negligible [31]. Finally, a recent analysis has proved that modularity
increases if subgraphs smaller than a characteristic size are merged [32]. This

] |
Figure 2: Schematic example of a hierarchical graph. Sixteen modules with four
vertices each are clearly organized in groups of four.

fact represents a serious bias when one looks for communities via modularity
optimization and is discussed in more detail in Section

2.3 Hierarchies

Graph vertices can have various levels of organization. Modules can display an
internal community structure, i.e. they can contain smaller modules, which can
in turn include other modules, and so on. In this case one says that the graph is
hierarchical (see Fig.[2). For a clear classification of the vertices and their roles
inside a graph, it is important to find all modules of the graph as well as their
hierarchy.

A natural way to represent the hierarchical structure of a graph is to draw a
dendrogram, like the one illustrated in Fig.[3l Here, partitions of a graph with
twelve vertices are shown. At the bottom, each vertex is its own module. By
moving upwards, groups of vertices are successively aggregated. Merges of com-
munities are represented by horizontal lines. The uppermost level represents
the whole graph as a single community. Cutting the diagram horizontally at
some height, as shown in the figure (dashed line), displays one level of organi-
zation of the graph vertices. The diagram is hierarchical by construction: each
community belonging to a level is fully included in a community at a higher
level. Dendrograms are regularly used in sociology and biology. The technique
of hierarchical clustering, described in Section @ lends itself naturally to this
kind of representation.

2.4 Overlapping Communities

As stated in Section 2.2], in a partition each vertex is generally attributed only
to one module. However, vertices lying at the boundary between modules may
be difficult to assign to one module or another, based on their connections with

Figure 3: A dendrogram, or hierarchical tree. Horizontal cuts correspond to
partitions of the graph in communities. Reprinted figure with permission from
Newman MEJ, Girvan M, Physical Review E 69, 026113, 2004. Copyright 2004
by the Americal Physical Society.

Figure 4: Overlapping communities. In the partition highlighted by the dashed
contours, the green vertices are shared between more groups.

the other vertices. In this case, it makes sense to consider such intermediate
vertices as belonging to more groups, which are then called overlapping commu-
nities (Fig. M)). Many real networks are characterized by a modular structure
with sizeable overlaps between different clusters. In social networks, people usu-
ally belong to more communities, according to their personal life and interests:
for instance a person may have tight relationships both with the people of its
working environment and with other individuals involved in common free time
activities.

Accounting for overlaps is also a way to better exploit the information that
one can derive from topology. Ideally, one could estimate the degree of partici-
pation of a vertex in different communities, which corresponds to the likelihood
that the vertex belongs to the various groups. Community detection algorithms,
instead, often disagree in the classification of periferal vertices of modules, be-

Figure 5: Graph partitioning. The cut shows the partition in two groups of
equal size.

cause they are forced to put them in a single cluster, which may be the wrong
one.

The problem of community detection is so hard that very few algorithms con-
sider the possibility of having overlapping communities. An interesting method
has been recently proposed by G. Palla et al. [I3] and is described in Section 5.5
For standard algorithms, the problem of identifying overlapping vertices could
be addressed by checking for the stability of partitions against slight variations
in the structure of the graph, as described in [33].

3 Computer Science: Graph Partitioning

The problem of graph partitioning consists in dividing the vertices in g groups
of predefined size, such that the number of edges lying between the groups is
minimal. The number of edges running between modules is called cut size.
Fig. A presents the solution of the problem for a graph with fourteen vertices,
for g = 2 and clusters of equal size.

The specification of the number of modules of the partition is necessary. If
one simply imposed a partition with the minimal cut size, and left the number of
modules free, the solution would be trivial, corresponding to all vertices ending
up in the same module, as this would yield a vanishing cut size.

Graph partitioning is a fundamental issue in parallel computing, circuit par-
titioning and layout, and in the design of many serial algorithms, including
techniques to solve partial differential equations and sparse linear systems of
equations. Most variants of the graph partitioning problem are NP-hard, i.e. it
is unlikely that the solution can be computed in a time growing as a power of
the graph size. There are however several algorithms that can do a good job,
even if their solutions are not necessarily optimal [34]. Most algorithms perform
a bisection of the graph, which is already a complex task. Partitions into more
than two modules are usually attained by iterative bisectioning.

10

The Kernighan-Lin algorithm [35] is one of the earliest methods proposed
and is still frequently used, often in combination with other techniques. The
authors were motivated by the problem of partitioning electronic circuits onto
boards: the nodes contained in different boards need to be linked to each other
with the least number of connections. The procedure is an optimization of
a benefit function @), which represents the difference between the number of
edges inside the modules and the number of edges lying between them. The
starting point is an initial partition of the graph in two clusters of the predefined
size: such initial partition can be random or suggested by some information on
the graph structure. Then, subsets consisting of equal numbers of vertices are
swapped between the two groups, so that () has the maximal increase. To
reduce the risk to be trapped in local maxima of @, the procedure includes
some swaps that decrease the function Q). After a series of swaps with positive
and negative gains, the partition with the largest value of () is selected and used
as starting point of a new series of iterations. The Kernighan-Lin algorithm is
quite fast, scaling as O(n?) in worst-case time, n being the number of vertices.
The partitions found by the procedure are strongly dependent on the initial
configuration and other algorithms can do better. However, the method is used
to improve on the partitions found through other techniques, by using them as
starting configurations for the algorithm.

Another popular technique is the spectral bisection method, which is based
on the properties of the Laplacian matrix. The Laplacian matrix (or simply
Laplacian) of a graph is obtained from the adjacency matrix A by placing on
the diagonal the degrees of the vertices and by changing the signs of the other
elements. The Laplacian has all non-negative eigenvalues and at least one zero
eigenvalue, as the sum of the elements of each row and column of the ma-
trix is zero. If a graph is divided into g connected components, the Laplacian
would have g degenerate eigenvectors with eigenvalue zero and can be written
in block-diagonal form, i.e. the vertices can be ordered in such a way that the
Laplacian displays g square blocks along the diagonal, with entries different
from zero, whereas all other elements vanish. Each block is the Laplacian of
the corresponding subgraph, so it has the trivial eigenvector with components
(1,1,1,...,1,1). Therefore, there are g degenerate eigenvectors with equal non-
vanishing components in correspondence of the vertices of a block, whereas all
other components are zero. In this way, from the components of the eigenvectors
one can identify the connected components of the graph.

If the graph is connected, but consists of g subgraphs which are weakly linked
to each other, the spectrum will have one zero eigenvalue and g — 1 eigenvalues
which are close to zero. If the groups are two, the second lowest eigenvalue will
be close to zero and the corresponding eigenvector, also called Fiedler vector,
can be used to identify the two clusters as shown below.

Every partition of a graph with n vertices in two groups can be represented
by an index vector s, whose component s; is +1 if vertex 7 is in one group and
—1 if it is in the other group. The cut size R of the partition of the graph in

11

the two groups can be written as

1
R = -s"Ls, (3)
4
where L is the Laplacian matrix and s” the transpose of vector s. Vector s
can be written as s =), a;v;, where v;, i = 1,...,n are the eigenvectors of the
Laplacian. If s is properly normalized, then

R=a}\, (4)

where J; is the Laplacian eigenvalue corresponding to eigenvector v;. It is worth
remarking that the sum contains at most n — 1 terms, as the Laplacian has at
least one zero eigenvalue. Minimizing R equals to the minimization of the sum
on the right-hand side of Eq. @ This task is still very hard. However, if the
second lowest eigenvector \g is close enough to zero, a good approximation of
the minimum can be attained by choosing s parallel to the Fiedler vector va:
this would reduce the sum to Ao, which is a small number. But the index vector
cannot be perfectly parallel to vy by construction, because all its components
are equal in modulus, whereas the components of vy are not. The best one can
do is to match the signs of the components. So, one can set s; = +1 (—1) if
vi > 0 (< 0). It may happen that the sizes of the two corresponding groups
do not match the predefined sizes one wishes to have. In this case, if one aims
at a split in n; and ny = n — n1 vertices, the best strategy is to order the
components of the Fiedler vector from the lowest to the largest values and to
put in one group the vertices corresponding to the first n; components from the
top or the bottom, and the remaining vertices in the second group. If there is
a discrepancy between n; and the number of positive or negative components
of vo, this procedure yields two partitions: the better solution is the one that
gives the smaller cut size.

The spectral bisection method is quite fast. The first eigenvectors of the
Laplacian can be computed by using the Lanczos method [30], that scales as
m/(As — A2), where m is the number of edges of the graph. If the eigenvalues
A2 and A3 are well separated, the running time of the algorithm is much shorter
than the time required to calculate the complete set of eigenvectors, which scales
as O(n®). The method gives in general good partitions, that can be further
improved by applying the Kernighan-Lin algorithm.

Other methods for graph partitioning include level-structure partitioning,
the geometric algorithm, multilevel algorithms, etc. A good description of these
algorithms can be found in Ref. [34].

Graph partitioning algorithms are not good for community detection, be-
cause it is necessary to provide as input both the number of groups and their
size, about which in principle one knows nothing. Instead, one would like an
algorithm capable to produce this information in its output. Besides, using it-
erative bisectioning to split the graph in more pieces is not a reliable procedure.

12

4 Social Science: Hierarchical and K-Means Clus-
tering

In social network analysis, one partitions actors/vertices in clusters such that
actors in the same cluster are more similar between themselves than actors of
different clusters. The two most used techniques to perform clustering analysis
in sociology are hierarchical clustering and k-means clustering.

The starting point of hierarchical clustering is the definition of a similarity
measure between vertices. After a measure is chosen, one computes the simi-
larity for each pair of vertices, no matter if they are connected or not. At the
end of this process, one is left with a new n x n matrix X, the similarity ma-
trix. Initially, there are n groups, each containing one of the vertices. At each
step, the two most similar groups are merged; the procedure continues until all
vertices are in the same group.

There are different ways to define the similarity between groups out of the
matrix X. In single linkage clustering, the similarity between two groups is the
minimum element z;;, with ¢ in one group and j in the other. On the contrary,
the maximum element x;; for vertices of different groups is used in the procedure
of complete linkage clustering. In average linkage clustering one has to compute
the average of the x;;.

The procedure can be better illustrated by means of dendrograms, like the
one in Fig. Bl One should note that hierarchical clustering does not deliver a
single partition, but a set of partitions.

There are many possible ways to define a similarity measure for the vertices
based on the topology of the network. A possibility is to define a distance
between vertices, like

Tij = Z (Air — Ajr)2. (5)

ki, j

This is a dissimilarity measure, based on the concept of structural equivalence.
Two vertices are structurally equivalent if they have the same neighbours, even
if they are not adjacent themselves. If ¢ and j are structurally equivalent,
x;5 = 0. Vertices with large degree and different neighbours are considered very
“far” from each other. Another measure related to structural equivalence is the
Pearson correlation between columns or rows of the adjacency matrix,

Ek(Aik — i) (Aji — p15)

no;o

; (6)

Tij =

where the averages y1; = (3; A;j)/n and the variances o; = >, (A;; — wi)?.
An alternative measure is the number of edge- (or vertex-) independent paths
between two vertices. Independent paths do not share any edge (vertex), and
their number is related to the maximum flow that can be conveyed between the
two vertices under the constraint that each edge can carry only one unit of flow
(max-flow/min-cut theorem). Similarly, one could consider all paths running
between two vertices. In this case, there is the problem that the total number

13

of paths is infinite, but this can be avoided if one performs a weighted sum of
the number of paths, where paths of length [are weighted by the factor of, with
a < 1. So, the weights of long paths are exponentially suppressed and the sum
converges.

Hierarchical clustering has the advantage that it does not require a prelim-
inary knowledge on the number and size of the clusters. However, it does not
provide a way to discriminate between the many partitions obtained by the
procedure, and to choose that or those that better represent the community
structure of the graph. Moreover, the results of the method depend on the
specific similarity measure adopted. Finally, it does not correctly classify all
vertices of a community, and in many cases some vertices are missed even if
they have a central role in their clusters [22].

Another popular clustering technique in sociology is k-means clustering [37].
Here, the number of clusters is preassigned, say k. The vertices of the graph
are embedded in a metric space, so that each vertex is a point and a distance
measure is defined between pairs of points in the space. The distance is a mea-
sure of dissimilarity between vertices. The aim of the algorithm is to identify &
points in this space, or centroids, so that each vertex is associated to one cen-
troid and the sum of the distances of all vertices from their respective centroids
is minimal. To achieve this, one starts from an initial distribution of centroids
such that they are as far as possible from each other. In the first iteration, each
vertex is assigned to the nearest centroid. Next, the centers of mass of the k
clusters are estimated and become a new set of centroids, which allows for a new
classification of the vertices, and so on. After a sufficient number of iterations,
the positions of the centroids are stable, and the clusters do not change any
more. The solution found is not necessarily optimal, as it strongly depends on
the initial choice of the centroids. The result can be improved by performing
more runs starting from different initial conditions.

The limitation of k-means clustering is the same as that of the graph parti-
tioning algorithms: the number of clusters must be specified at the beginning,
the method is not able to derive it. In addition, the embedding in a metric
space can be natural for some graphs, but rather artificial for others.

5 New Methods

From the previous two sections it is clear that traditional approaches to derive
graph partitions have serious limits. The most important problem is the need
to provide the algorithms with information that one would like to derive from
the algorithms themselves, like the number of clusters and their size. Even
when these inputs are not necessary, like in hierarchical clustering, there is the
question of estimating the goodness of the partitions, so that one can pick the
best one. For these reasons, there has been a major effort in the last years
to devise algorithms capable of extracting a complete information about the
community structure of graphs. These methods can be grouped in different
categories.

14

e

Figure 6: Edge betweenness is highest for edges connecting communities. In the
figure, the thick edge in the middle has a much higher betweenness than all other
edges, because all shortest paths connecting vertices of the two communities run
through it.

5.1 Divisive Algorithms

A simple way to identify communities in a graph is to detect the edges that
connect vertices of different communities and remove them, so that the clusters
get disconnected from each other. This is the philosophy of divisive algorithms.
The crucial point is to find a property of intercommunity edges that could allow
for their identification. Any divisive method delivers many partitions, which are
by construction hierarchical, so that they can be represented with dendrograms.
Algorithm of Girvan and Newman. The most popular algorithm is that pro-
posed by Girvan and Newman [I4]. The method is also historically important,
because it marked the beginning of a new era in the field of community de-
tection. Here edges are selected according to the values of measures of edge
centrality, estimating the importance of edges according to some property or
process running on the graph. The steps of the algorithm are:

1. Computation of the centrality for all edges;

2. Removal of edge with largest centrality;

3. Recalculation of centralities on the running graph;
4. Tteration of the cycle from step 2.

Girvan and Newman focused on the concept of betweenness, which is a variable
expressing the frequency of the participation of edges to a process. They consid-
ered three alternative definitions: edge betweenness, current-flow betweenness
and random walk betweenness.

Edge betweenness is the number of shortest paths between all vertex pairs
that run along the edge. It is an extension to edges of the concept of site
betweenness, introduced by Freeman in 1977 [20]. It is intuitive that intercom-
munity edges have a large value of the edge betweenness, because many short-
est paths connecting vertices of different communities will pass through them
(Fig.[Bl). The betweenness of all edges of the graph can be calculated in a time
that scales as O(mn), with techniques based on breadth-first-search [20] [38].

15

Current-flow betweenness is defined by considering the graph a resistor net-
work, with edges having unit resistance. If a voltage difference is applied be-
tween any two vertices, each edge carries some amount of current, that can be
calculated by solving Kirchoff’s equations. The procedure is repeated for all
possible vertex pairs: the current-flow betweenness of an edge is the average
value of the current carried by the edge. Solving Kirchoff’s equations requires
the inversion of an n x n matrix, which can be done in a time O(n?) for a sparse
matrix.

The random-walk betweenness of an edge says how frequently a random
walker running on the graph goes across the edge. We remind that a random
walker moving from a vertex follows each edge with equal probability. A pair of
vertices is chosen at random, s and ¢t. The walker starts at s and keeps moving
until it hits ¢, where it stops. One computes the probability that each edge was
crossed by the walker, and averages over all possible choices for the vertices s
and t. The complete calculation requires a time O(n®) on a sparse graph. It is
possible to show that this measure is equivalent to current-flow betweenness [39).

Calculating edge betweenness is much faster than current-flow or random
walk betweenness (O(n?) versus O(n?) on sparse graphs). In addition, in prac-
tical applications the Girvan-Newman algorithm with edge betweenness gives
better results than adopting the other centrality measures. Numerical stud-
ies show that the recalculation step 3 of Girvan-Newman algorithm is essential
to detect meaningful communities. This introduces an additional factor m in
the running time of the algorithm: consequently, the edge betweenness version
scales as O(m?n), or O(n?) on a sparse graph. Because of that, the algorithm
is quite slow, and applicable to graphs with up to n ~ 10000 vertices, with
current computational resources. In the original version of Girvan-Newman’s
algorithm [I4], the authors had to deal with the whole hierarchy of partitions,
as they had no procedure to say which partition is the best. In a successive
refinement [26], they selected the partition with the largest value of modularity
(see Section 22)), a criterion that has been frequently used ever since. There
have been countless applications of the Girvan-Newman method: the algorithm
is now integrated in well known libraries of network analysis programs.
Algorithm of Tyler et al.. Tyler, Wilkinson and Huberman proposed a modi-
fication of the Girvan-Newman algorithm, to improve the speed of the calcu-
lation [40]. The modification consists in calculating the contribution to edge
betweenness only from a limited number of vertex pairs, chosen at random, de-
riving a sort of Monte Carlo estimate. The procedure induces statistical errors
in the values of the edge betweenness. As a consequence, the partitions are in
general different for different choices of the sampling pairs of vertices. However,
the authors showed that, by repeating the calculation many times, the method
gives good results, with a substantial gain of computer time. In practical ex-
amples, only vertices lying at the boundary between communities may not be
clearly classified, and be assigned sometimes to a group, sometimes to another.
The method has been applied to a network of people corresponding through
email [40] and to networks of gene co-occurrences [41].

Algorithm of Fortunato et al.. An alternative measure of centrality for edges

16

is information centrality. It is based on the concept of efficiency [42], which
estimates how easily information travels on a graph according to the length of
shortest paths between vertices. The information centrality of an edge is the
variation of the efficiency of the graph if the edge is removed. In the algorithm by
Fortunato, Latora and Marchiori [43], edges are removed according to decreasing
values of information centrality. The method is analogous to that of Girvan and
Newman, but slower, as it scales as O(n*) on a sparse graph. On the other
hand, it gives a better classification of vertices when communities are fuzzy, i.e.
with a high degree of interconnectedness.

Algorithm of Radicchi et al.. Because of the high density of edges within com-
munities, it is easy to find loops in them, i.e. closed non-intersecting paths.
On the contrary, edges lying between communities will hardly be part of loops.
Based on this intuitive idea, Radicchi et al. proposed a new measure, the edge
clustering coefficient, such that low values of the measure are likely to corre-
spond to intercommunity edges [25]. The edge clustering coefficient generalizes
to edges the notion of clustering coeflicient introduced by Watts and Strogatz
for vertices [44]. The latter is the number of triangles including a vertex divided
by the number of possible triangles that can be formed. The edge clustering
coefficient is the number of loops of length ¢ including the edge divided by the
number of possible cycles. Usually, loops of length g = 3 or 4 are considered.
At each iteration, the edge with smallest clustering coefficient is removed, the
measure is recalculated again, and so on. The procedure stops when all clusters
obtained are LS-sets or “weak” communities (see Section [Z]). Since the edge
clustering coefficient is a local measure, involving at most an extended neigh-
bourhood of the edge, it can be calculated very quickly. The running time of the
algorithm to completion is O(m?/n?), or O(n?) on a sparse graph, so it is much
shorter than the running time of the Girvan-Newman method. On the other
hand, the method may give poor results when the graph has few loops, as it
happens in several non-social networks. In this case, in fact, the edge clustering
coefficient is small and fairly similar for all edges, and the algorithm may fail to
identify the bridges between communities.

5.2 Modularity Optimization

If Newman-Girvan modularity @ (Section [22)) is a good indicator of the quality
of partitions, the partition corresponding to its maximum value on a given graph
should be the best, or at least a very good one. This is the main motivation for
modularity maximization, perhaps the most popular class of methods to detect
communities in graphs. An exhaustive optimization of @ is impossible, due to
the huge number of ways in which it is possible to partition a graph, even when
the latter is small. Besides, the true maximum is out of reach, as it has been
recently proved that modularity optimization is an NP-hard problem [45], so
it is probably impossible to find the solution in a time growing polynomially
with the size of the graph. However, there are currently several algorithms able
to find fairly good approximations of the modularity maximum in a reasonable
time.

17

Greedy techniques. The first algorithm devised to maximize modularity was a
greedy method of Newman [46]. It is an agglomerative method, where groups of
vertices are successively joined to form larger communities such that modularity
increases after the merging. One starts from n clusters, each containing a single
vertex. Edges are not initially present, they are added one by one during the
procedure. However, modularity is always calculated from the full topology of
the graph, since one wants to find its partitions. Adding a first edge to the set of
disconnected vertices reduces the number of groups from n to n—1, so it delivers
a new partition of the graph. The edge is chosen such that this partition gives
the maximum increase of modularity with respect to the previous configuration.
All other edges are added based on the same principle. If the insertion of an edge
does not change the partition, i.e. the clusters are the same, modularity stays
the same. The number of partitions found during the procedure is n, each with
a different number of clusters, from n to 1. The largest value of modularity in
this subset of partitions is the approximation of the modularity maximum given
by the algorithm. The update of the modularity value at each iteration step
can be performed in a time O(n 4+ m), so the algorithm runs to completion in a
time O((m+n)n), or O(n?) on a sparse graph, which is fast. In a later paper by
Clauset et al. [47], it was shown that the calculation of modularity during the
procedure can be performed much more quickly by use of max-heaps, special
data structures created using a binary tree. By doing that, the algorithm scales
as O(mdlogn), where d is the depth of the dendrogram describing the succes-
sive partitions found during the execution of the algorithm, which grows as logn
for graphs with a strong hierarchical structure. For those graphs, the running
time of the method is then O(nlog®n), which allows to analyse the commu-
nity structure of very large graphs, up to 107 vertices. The greedy algorithm
is currently the only algorithm that can be used to estimate the modularity
maximum on such large graphs. On the other hand, the approximation it finds
is not that good, as compared with other techniques. The accuracy of the algo-
rithm can be considerably improved if one accounts for the size of the groups to
be merged [48], or if the hierarchical agglomeration is started from some good
intermediate configuration, rather than from the individual vertices [49].

Simulated annealing. Simulated annealing [50] is a probabilistic procedure for
global optimization used in different fields and problems. It consists in per-
forming an exploration of the space of possible states, looking for the global
optimum of a function F, say its maximum. Transitions from one state to an-
other occur with probability 1 if F' increases after the change, otherwise with
a probability exp(BAF'), where AF is the decrease of the function and § is an
index of stochastic noise, a sort of inverse temperature, which increases after
each iteration. The noise reduces the risk that the system gets trapped in local
optima. At some stage, the system converges to a stable state, which can be
an arbitrarily good approximation of the maximum of F', depending on how
many states were explored and how slowly [is varied. Simulated annealing
was first employed for modularity optimization by R. Guimerd et al. [31]. Its
standard implementation combines two types of “moves”: local moves, where
a single vertex is shifted from one cluster to another, taken at random; global

18

moves, consisting of merges and splits of communities. In practical applications,
one typically combines n? local moves with n global ones in one iteration. The
method can potentially come very close to the true modularity maximum, but
it is slow. Therefore, it can be used for small graphs, with up to about 10*
vertices. Applications include studies of potential energy landscapes [51] and of
metabolic networks [12].

FExtremal optimization. Extremal optimization is a heuristic search procedure
proposed by Boettcher and Percus [52], in order to achieve an accuracy compa-
rable with simulated annealing, but with a substantial gain in computer time.
It is based on the optimization of local variables, expressing the contribution
of each unit of the system to the global function at study. This technique was
used for modularity optimization by Duch and Arenas [53]. Modularity can be
indeed written as a sum over the vertices: the local modularity of a vertex is
the value of the corresponding term in this sum. A fitness measure for each
vertex is obtained by dividing the local modularity of the vertex by its degree.
One starts from a random partition of the graph in two groups. At each it-
eration, the vertex with the lowest fitness is shifted to the other cluster. The
move changes the partition, so the local fitnesses need to be recalculated. The
process continues until the global modularity) cannot be improved any more
by the procedure. At this stage, each cluster is considered as a graph on its own
and the procedure is repeated, as long as @ increases for the partitions found.
The algorithm finds an excellent approximation of the modularity maximum in
a time O(n?logn), so it represents a good tradeoff between accuracy and speed.
Spectral optimization. Modularity can be optimized using the eigenvalues and
eigenvectors of a special matrix, the modularity matrix B, whose elements are

ik 7)

2m
where the notation is the same used in Eq. Il The method [54, 55] is analo-
gous to spectral bisection, described in Section [Bl The difference is that here
the Laplacian matrix is replaced by the modularity matrix. Between) and
B there is the same relation as between R and T in Eq. Bl so modularity can
be written as a weighted sum of the eigenvalues of B, just like Eq. 4l Here
one has to look for the eigenvector of B with largest eigenvalue, uy, and group
the vertices according to the signs of the components of u;, just like in Sec-
tion Bl The Kernighan-Lin algorithm can then be used to improve the result.
The procedure is repeated for each of the clusters separately, and the number of
communities increases as long as modularity does. The advantage over spectral
bisection is that it is not necessary to specify the size of the two groups, because
it is determined by taking the partition with largest modularity. The drawback
is similar as for spectral bisection, i.e. the algorithm gives the best results for
bisections, whereas it is less accurate when the number of communities is larger
than two. The situation could be improved by using the other eigenvectors with
positive eigenvalues of the modularity matrix. In addition, the eigenvectors
with the most negative eigenvalues are important to detect a possible multipar-
tite structure of the graph, as they give the most relevant contribution to the

Bij = Aij —

19

Figure 7: Resolution limit of modularity optimization. The natural community
structure of the graph, represented by the individual cliques (circles), is not
recognized by optimizing modularity, if the cliques are smaller than a scale
depending on the size of the graph. Reprinted figure with permission from
Fortunato S, Barthélemy M, Proceedings of the National Academy of Science of
the USA, 104, 36 (2007). Copyright 2007 from the National Academy of Science
of the USA.

modularity minimum. The algorithm typically runs in a time O(n?logn) for a
sparse graph, when one computes only the first eigenvector, so it is faster than
extremal optimization, and slightly more accurate, especially for large graphs.

Finally, some general remarks on modularity optimization and its reliability.
A large value for the modularity maximum does not necessarily mean that a
graph has community structure. Random graphs can also have partitions with
large modularity values, even though clusters are not explicitly built in [311 [56].
Therefore, the modularity maximum of a graph reveals its community structure
only if it is appreciably larger than the modularity maximum of random graphs
of the same size [57].

In addition, one assumes that the modularity maximum delivers the “best”
partition of the network in communities. However, this is not always true [32].
In the definition of modularity (Eq.[2) the graph is compared with a random
version of it, that keeps the degrees of its vertices. If groups of vertices in the
graphs are more tightly connected than they would be in the randomized graph,
modularity optimization would consider them as parts of the same module. But
if the groups have less than \/m internal edges, the expected number of edges
running between them in modularity’s null model is less than one, and a single
interconnecting edge would cause the merging of the two groups in the optimal
partition. This holds for every density of edges inside the groups, even in the
limit case in which all vertices of each group are connected to each other, i.e. if

20

the groups are cliques. In Fig.[[a graph is made out of n. identical cliques, with [
vertices each, connected by single edges. It is intuitive to think that the modules
of the best partition are the single cliques: instead, if n. is larger than about
12, modularity would be higher for the partition in which pairs of consecutive
cliques are parts of the same module (indicated by the dashed lines in the figure).
The problem holds for a wide class of possible null models [58]. Attempts have
been made to solve it within the modularity framework [59, 60, G1].

Modifications of the measure have also been suggested. Massen and Doye
proposed a slight variation of modularity’s null model [51]: it is still a graph
with the same degree sequence as the original, and with edges rewired at random
among the vertices, but one imposes the additional constraint that there can
be neither multiple edges between a pair of vertices nor edges joining a vertex
with itself (self-edges). Muff, Rao and Caflisch remarked that modularity’s
null model implicitly assumes that each vertex could be attached to any other,
whether in real cases a cluster is usually connected to few other clusters [62].
Therefore, they proposed a local version of modularity, in which the expected
number of edges within a module is not calculated with respect to the full graph,
but considering just a portion of it, namely the subgraph including the module
and its neighbouring modules.

5.3 Spectral Algorithms

As discussed above, spectral properties of graph matrices are frequently used to
find partitions. Traditional methods are in general unable to predict the number
and size of the clusters, which instead must be fed into the procedure. Recent
algorithms, reviewed below, are more powerful.

Algorithm of Donetti and Murioz. An elegant method based on the eigenvectors
of the Laplacian matrix has been devised by Donetti and Mufioz [63]. The idea
is simple: the values of the eigenvector components are close for vertices in the
same community, so one can use them as coordinates to represent vertices as
points in a metric space. So, if one uses M eigenvectors, one can embed the ver-
tices in an M-dimensional space. Communities appear as groups of points well
separated from each other, as illustrated in Fig. 8l The separation is the more
visible, the larger the number of dimensions/eigenvectors M. The space points
are grouped in communities by hierarchical clustering (see Sectiond]). The final
partition is the one with largest modularity. For the similarity measure between
vertices, Donetti and Munoz used both the Euclidean distance and the angle
distance. The angle distance between two points is the angle between the vectors
going from the origin of the M-dimensional space to either point. Applications
show that the best results are obtained with complete-linkage clustering. The
algorithm runs to completion in a time O(n?), which is not fast. Moreover, the
number M of eigenvectors that are needed to have a clean separation of the
clusters is not known a priori.

Algorithm of Capocci et al.. Similarly to Donetti and Mufioz, Capocci et al. used
eigenvector components to identify communities [64]. In this case the eigenvec-
tors are those of the normal matriz, that is derived from the adjacency matrix

21

0.1 0.1 ¥

0,05 i+--{ -0.05 -

-0.1 -0.05 0.05 0.1 0.15

Figure 8: Spectral algorithm by Donetti and Munoz. Vertex ¢ is represented
by the values of the ith components of Laplacian eigenvectors. In this example,
the graph has an ad-hoc division in four communities, indicated by the colours.
The communities are better separated in two dimensions (b) than in one (a).
Reprinted figure with permission from Donetti L, Munoz MA, Journal of Sta-
tistical Mechanics: Theory and Experiment, P10012 (2004). Copyright 2004 by
the Institute of Physics.

by dividing each row by the sum of its elements. The eigenvectors can be quickly
calculated by performing a constrained optimization of a suitable cost function.
A similarity matrix is built by calculating the correlation between eigenvector
components: the similarity between vertices ¢ and j is the Pearson correlation
coefficient between their corresponding eigenvector components, where the av-
erages are taken over the set of eigenvectors used. The method can be extended
to directed graphs. It is useful to estimate vertex similarities, however it does
not provide a well-defined partition of the graph.

Algorithm of Wu and Huberman. A fast algorithm by Wu and Huberman iden-
tifies communities based on the properties of resistor networks [65]. It is essen-
tially a method for bisectioning graph, similar to spectral bisection, although
partitions in an arbitrary number of communities can be obtained by iterative
applications. The graph is transformed into a resistor network where each edge
has unit resistance. A unit potential difference is set between two randomly
chosen vertices. The idea is that, if there is a clear division in two communities
of the graph, there will be a visible gap between voltage values for vertices at
the borders between the clusters. The voltages are calculated by solving Kir-
choff’s equations: an exact resolution would be too time consuming, but it is
possible to find a reasonably good approximation in a linear time for a sparse
graph with a clear community structure, so the more time consuming part of
the algorithm is the sorting of the voltage values, which takes time O(nlogn).
Any possible vertex pair can be chosen to set the initial potential difference,
so the procedure should be repeated for all possible vertex pairs. The authors
showed that this is not necessary, and that a limited number of sampling pairs

22

is sufficient to get good results, so the algorithm scales as O(nlogn) and is very
fast. An interesting feature of the method is that it can quickly find the natural
community of any vertex, without determining the complete partition of the
graph. For that, one uses the vertex as source voltage and places the sink at an
arbitrary vertex. The same feature is present in an older algorithm by Flake et
al. [I1], where one uses max-flow instead of current flow.

Previous works have shown that also the eigenvectors of the transfer matriz
T can be used to extract useful information on community structure [66] [67].
The element T;; of the transfer matrix is 1/k; if ¢ and j are neighbours, where
k; is the degree of j, otherwise it is zero. The transfer matrix rules the process
of diffusion on graphs.

5.4 Dynamic Algorithms

This Section describes methods employing processes running on the graph, fo-
cusing on spin-spin interactions, random walk and synchronization.

Q-state Potts model. The Potts model is among the most popular models in
statistical mechanics [68]. It describes a system of spins that can be in ¢ differ-
ent states. The interaction is ferromagnetic, i.e. it favours spin alignment, so at
zero temperature all spins are in the same state. If antiferromagnetic interac-
tions are also present, the ground state of the system may not be the one where
all spins are aligned, but a state where different spin values coexist, in homo-
geneous clusters. If Potts spin variables are assigned to the vertices of a graph
with community structure, and the interactions are between neighbouring spins,
it is likely that the topological clusters could be recovered from like-valued spin
clusters of the system, as there are many more interactions inside communities
than outside. Based on this idea, inspired by an earlier paper by Blatt, Wise-
man and Domany [69], Reichardt and Bornholdt proposed a method to detect
communities that maps the graph onto a g-Potts model with nearest-neighbours
interactions [70]. The Hamiltonian of the model, i.e. its energy, is the sum of
two competing terms, one favoring spin alignment, one antialignment. The rel-
ative weight of these two terms is expressed by a parameter 7, which is usually
set to the value of the density of edges of the graph. The goal is to find the
ground state of the system, i.e. to minimize the energy. This can be done
with simulated annealing [50], starting from a configuration where spins are
randomly assigned to the vertices and the number of states ¢ is very high. The
procedure is quite fast and the results do not depend on g. The method also
allows to identify vertices shared between communities, from the comparison
of partitions corresponding to global and local energy minima. More recently,
Reichardt and Bornholdt derived a general framework [71], in which detecting
community structure is equivalent to finding the ground state of a ¢g-Potts model
spin glass [72]. Their previous method and modularity optimization are recov-
ered as special cases. Overlapping communities can be discovered by comparing
partitions with the same (minimal) energy, and hierarchical structure can be
investigated by tuning a parameter acting on the density of edges of a reference
graph without community structure.

23

Random walk. Using random walks to find communities comes from the idea
that a random walker spends a long time inside a community due to the high
density of edges and consequent number of paths that could be followed. Zhou
used random walks to define a distance between pairs of vertices [73]: the dis-
tance between ¢ and j is the average number of edges that a random walker has
to cross to reach j starting from ¢. Close vertices are likely to belong to the same
community. The global attractor of a vertex i is the closest vertex to i, whereas
the local attractor of 7 is its closest neighbour. Two types of communities are
defined, according to local or global attractors: a vertex ¢ has to be put in the
same community of its attractor and of all other vertices for which ¢ is an attrac-
tor. Communities must be minimal subgraphs, i.e. they cannot include smaller
subgraphs which are communities according to the chosen criterion. Applica-
tions to real and artificial networks show that the method can find meaningful
partitions. In a successive paper [74], Zhou introduced a measure of dissimilarity
between vertices based on the distance defined above. The measure resembles
the definition of distance based on structural equivalence of Eq. B, where the
elements of the adjacency matrix are replaced by the corresponding distances.
Graph partitions are obtained with a divisive procedure that, starting from the
graph as a single community, performs successive splits based on the criterion
that vertices in the same cluster must be less dissimilar than a running thresh-
old, which is decreased during the process. The hierarchy of partitions derived
by the method is representative of actual community structures for several real
and artificial graphs. In another work [75], Zhou and Lipowsky defined distances
with biased random walkers, where the bias is due to the fact that walkers move
preferentially towards vertices sharing a large number of neighbours with the
starting vertex. A different distance measure between vertices based on random
walks was introduced by Latapy and Pons [76]. The distance is calculated from
the probabilities that the random walker moves from a vertex to another in
a fixed number of steps. Vertices are then grouped into communities through
hierarchical clustering. The method is quite fast, running to completion in a
time O(n?logn) on a sparse graph.

Synchronization. Synchronization is another promising dynamic process to re-
veal communities in graphs. If oscillators are placed at the vertices, with ini-
tial random phases, and have nearest-neighbour interactions, oscillators in the
same community synchronize first, whereas a full synchronization requires a
longer time. So, if one follows the time evolution of the process, states with
synchronized clusters of vertices can be quite stable and long-lived, so they
can be easily recognized. This was first shown by Arenas, Diaz-Guilera and
Pérez-Vicente [77]. They used Kuramoto oscillators [78], which are coupled
two-dimensional vectors endowed with a proper frequency of oscillations. If the
interaction coupling exceeds a threshold, the dynamics leads to synchroniza-
tion. Arenas et al. showed that the time evolution of the system reveals some
intermediate time scales, corresponding to topological scales of the graph, i.e. to
different levels of organization of the vertices. Hierarchical community structure
can be revealed in this way (Fig. [@). Based on the same principle, Boccaletti
et al. designed a community detection method based on synchronization [80].

24

0.7
0.6

Q
o
o

0.4
0.3
0.2
01

modul arity

100

10

number of communities

[

gl‘r\ Lol

time

Figure 9: Number of clusters of synchronized Kuramoto oscillators as a func-
tion of time for a hierarchical graph. The two levels of community structure are
revealed by the plateaus in the figure, which indicate the stability of those con-
figurations. The top diagram shows the values of Newman-Girvan modularity
Q for the corresponding partitions. The shadowed area highlights the partition
with largest modularity. Reprinted figure with permission from Arenas A, Diaz-
Guilera A, European Physical Journal ST 143, 19 (2007). Copyright 2007 by
EDP Sciences.

The synchronization dynamics is a variation of Kuramoto’s model, the opinion
changing rate (OCR) model [81]. The evolution equations of the model are
solved for decreasing values of a parameter that tunes the strength of the inter-
action coupling between neighbouring vertices. In this way, different partitions
are recovered: the partition with the largest value of modularity is chosen. The
algorithm scales in a time O(mn), or O(n?) on sparse graphs, and gives good
results on practical examples. However, synchronization-based algorithms may
not be reliable when communities are very different in size.

5.5 Clique Percolation

In most of the approaches examined so far, communities have been characterized
and discovered, directly or indirectly, by some global property of the graph, like
betweenness, modularity, etc., or by some process that involves the graph as
a whole, like random walks, synchronization, etc. But communities can be
also interpreted as a form of local organization of the graph, so they could be
defined from some property of the groups of vertices themselves, regardless of
the rest of the graph. Moreover, very few of the algorithms presented so far

25

Figure 10: Clique Percolation Method. The example shows communities
spanned by adjacent 3-cliques (triangles). Overlapping vertices are shown by
the bigger dots. Reprinted figure with permission from Palla G, Derényi I,
Farkas I and Vicsek T, Nature 435, 814 (2005). Copyright 2005 by the Nature
Publishing Group.

are able to deal with the problem of overlapping communities (Section 24)).
A method that accounts both for the locality of the community definition and
for the possibility of having overlapping communities is the Clique Percolation
Method (CPM) by Palla et al. [13]. It is based on the concept that the internal
edges of community are likely to form cliques due to their high density. On
the other hand, it is unlikely that intercommunity edges form cliques: this idea
was already used in the divisive method of Radicchi et al. (see Section [B.1]).
Palla et al. define a k-clique as a complete graph with k& vertices. Notice
that this definition is different from the definition of n-clique (see Section [2.1])
used in social science. If it were possible for a clique to move on a graph, in
some way, it would probably get trapped inside its original community, as it
could not cross the bottleneck formed by the intercommunity edges. Palla et
al. introduced a number of concepts to implement this idea. Two k-cliques
are adjacent if they share k — 1 vertices. The union of adjacent k-cliques is
called k-clique chain. Two k-cliques are connected if they are part of a k-
clique chain. Finally, a k-clique community is the largest connected subgraph
obtained by the union of a k-clique and of all k-cliques which are connected to
it. Examples of k-clique communities are shown in Fig. One could say that
a k-clique community is identified by making a k-clique “roll” over adjacent
k-cliques, where rolling means rotating a k-clique about the & — 1 vertices it
shares with any adjacent k-clique. By construction, k-clique communities can
share vertices, so they can be overlapping. There may be vertices belonging to

26

non-adjacent k-cliques, which could be reached by different paths and end up
in different clusters. In order to find k-clique communities, one searches first
for maximal cliques, a task that is known to require a running time that grows
exponentially with the size of the graph. However, the authors found that, for
the real networks they analyzed, the procedure is quite fast, allowing to analyze
graphs with up to 10° vertices in a reasonably short time. The actual scalability
of the algorithm depends on many factors, and cannot be expressed in closed
form. The algorithm has been extended to the analysis of weighted [82] and
directed [83] graphs. It was recently used to study the evolution of community
structure in social networks [84]. A special software, called CFinder, based on
the CPM, has been designed by Palla and coworkers and is freely available. The
CPM has the same limit as the algorithm of Radicchi et al.: it assumes that the
graph has a large number of cliques, so it may fail to give meaningful partitions
for graphs with just a few cliques, like technological networks.

5.6 Other Techniques

This Section describes some algorithms that do not fit in the previous categories,
although some overlap is possible.

Markov Cluster Algorithm (MCL). This method, invented by van Dongen [85],
simulates a peculiar process of flow diffusion in a graph. One starts from the
stochastic matrixz of the graph, which is obtained from the adjacency matrix by
dividing each element A;; by the degree of i. The element S;; of the stochastic
matrix gives the probability that a random walker, sitting at vertex ¢, moves to
j. The sum of the elements of each column of S is one. Each iteration of the
algorithm consists of two steps. In the first step, called expansion, the stochastic
matrix of the graph is raised to an integer power p (usually p = 2). The entry
M;; of the resulting matrix gives the probability that a random walker, starting
from vertex 4, reaches j in p steps (diffusion flow). The second step, which has
no physical counterpart, consists in raising each single entry of the matrix M
to some power «, where « is now real-valued. This operation, called inflation,
enhances the weights between pairs of vertices with large values of the diffusion
flow, which are likely to be in the same community. Next, the elements of each
row must be divided by their sum, such that the sum of the elements of the row
equals one and a new stochastic matrix is recovered. After some iterations, the
process delivers a stable matrix, with some remarkable properties. Its elements
are either zero or one, so it is a sort of adjacency matrix. Most importantly, the
graph described by the matrix is disconnected, and its connected components
are the communities of the original graph. The method is really simple to
implement, which is the main reason of its success: as of now, the MCL is one
of the most used clustering algorithms in bioinformatics. Due to the matrix
multiplication of the expansion step, the algorithm should scale as O(n?), even
if the graph is sparse, as the running matrix becomes quickly dense after a few
steps of the algorithm. However, while computing the matrix multiplication,
MCL keeps only a maximum number k of non-zero elements per column, where
k is usually much smaller than n. So, the actual worst-case running time of the

27

algorithm is O(nk?) on a sparse graph. A problem of the method is the fact
that the final partition is sensitive to the parameter o used in the inflation step.
Therefore several partitions can be obtained, and it is not clear which are the
most meaningful or representative.

Mazximum likelihood. Newman and Leicht have recently proposed an algorithm
based on traditional tools and techniques of statistical inference [86]. The
method consists in deducing the group structure of the graph by checking which
possible partition better “fits” the graph topology. The goodness of the fit is
measured by the likelihood that the observed graph structure was generated by
the particular set of relationships between vertices that define a partition. The
latter is described by two sets of model parameters, expressing the size of the
clusters and the connection preferences among the vertices, i.e. the probabilities
that vertices of one cluster are linked to any vertex. The partition corresponding
to the maximum likelihood is obtained by iterating a set of coupled equations for
the variables, starting from a suitable set of initial conditions. Convergence is
fast, so the algorithm could be applied to fairly large graphs, with up to about
10 vertices. A nice feature of the method is that it discovers more general
types of vertex classes than communities. For instance, multipartite structure
could be uncovered, or mixed patterns where multipartite subgraphs coexist
with communities, etc.. In this respect, it is more powerful than most methods
of community detection, which are bound to focus only on proper communi-
ties, i.e. subgraphs with more internal than external edges. In addition, since
partitions are defined by assigning probability values to the vertices, expressing
the extent of their membership in a group, it is possible that some vertices are
not clearly assigned to a group, but to more groups, so the method is able to
deal with overlapping communities. The main drawback of the algorithm is the
fact that one needs to specify the number of groups at the beginning of the
calculation, a number that is often unknown for real networks. It is possible
to derive this information self-consistently by maximizing the probability that
the data are reproduced by partitions with a given number of clusters. But this
procedure involves some degree of approximation, and the results are often not
good.

L-shell method. This is an agglomerative method designed by Bagrow and
Bollt [87]. The algorithm finds the community of any vertex, although the
authors also presented a more general procedure to identify the full community
structure of the graph. Communities are defined locally, based on a simple cri-
terion involving the number of edges inside and outside a group of vertices. One
starts from a vertex-origin and keeps adding vertices lying on successive shells,
where a shell is defined as a set of vertices at a fixed geodesic distance from the
origin. The first shell includes the nearest neighbours of the origin, the second
the next-to-nearest neighbours, and so on. At each iteration, one calculates the
number of edges connecting vertices of the new layer to vertices inside and out-
side the running cluster. If the ratio of these two numbers (“emerging degree”)
exceeds some predefined threshold, the vertices of the new shell are added to
the cluster, otherwise the process stops. Because of the local nature of the pro-
cess, the algorithm is very fast and can identify communities very quickly. By

28

repeating the process starting from every vertex, one could derive a membership
matriz M: the element M;; is one if vertex j belongs to the community of ver-
tex 4, otherwise it is zero. The membership matrix can be rewritten by suitably
permutating rows and columns based on their mutual distances. The distance
between two rows (or columns) is defined as the number of entries whose el-
ements differ. If the graph has a clear community structure, the membership
matrix takes a block-diagonal form, where the blocks identify the communities.
Unfortunately, the rearrangement of the matrix requires a time O(n?), so it is
quite slow. In a different algorithm, local communities are discovered through
greedy maximization of a local modularity measure [88].

Algorithm of Eckmann and Moses. This is another method where communities
are defined based on a local criterion [89]. The idea is to use the clustering
coefficient [44] of a vertex as a quantity to distinguish tightly connected groups
of vertices. Many edges mean many loops inside a community, so the vertices
of a community are likely to have a large clustering coefficient. The latter can
be related to the average distance between pairs of neighbours of the vertex.
The possible values of the distance are 1 (if neighbors are connected) or 2 (if
they are not), so the average distance lies between 1 and 2. The more triangles
there are in the subgraph, the shorter the average distance. Since each vertex
has always distance 1 from its neighbours, the fact that the average distance
between its neighbours is different from 1 reminds what happens when one
measures segments on a curved surface. Endowed with a metric, represented
by the geodesic distance between vertices/points, and a curvature, the graph
can be embedded in a geometric space. Communities appear as portions of
the graph with a large curvature. The algorithm was applied to the graph
representation of the World Wide Web, where vertices are Web pages and edges
are the hyperlinks that take users from a page to the other. The authors found
that communities correspond to Web pages dealing with the same topic.
Algorithm of Sales-Pardo et al.. This is an algorithm designed to detect hierar-
chical community structure (see Section[2.3), a realistic feature of many natural,
social and technological networks, that most algorithms usually neglect. The
authors [90] introduce first a similarity measure between pairs of vertices based
on Newman-Girvan modularity: basically the similarity between two vertices
is the frequency with which they coexist in the same community in partitions
corresponding to local optima of modularity. The latter are configurations for
which modularity is stable, i.e. it cannot increase if one shifts one vertex from
one cluster to another or by merging or splitting clusters. Next, the similarity
matrix is put in block-diagonal form, by minimizing a cost function expressing
the average distance of connected vertices from the diagonal. The blocks cor-
respond to the communities and the recovered partition represents the largest
scale organization level. To determine levels at lower scales, one iterates the
procedure for each subgraph identified at the previous level, which is considered
as an independent graph. The method yields then a hierarchy by construction,
as communities at each level are nested within communities at higher levels.
The algorithm is not fast, as both the search of local optima for modularity and
the rearrangement of the similarity matrix are performed with simulated anneal-

29

ing, but delivers good results for computer generated networks, and meaningful
partitions for some social, technological and biological networks.

Algorithm by Rosvall and Bergstrom. The modular structure can be considered
as a reduced description of a graph to approximate the whole information con-
tained in its adjacency matrix. Based on this idea, Rosvall and Bergstrom [91]
envisioned a communication process in which a partition of a network in com-
munities represents a synthesis Y of the full structure that a signaler sends to
a receiver, who tries to infer the original graph topology X from it. The best
partition corresponds to the signal Y that contains the most information about
X. This can be quantitatively assessed by the maximization of the mutual in-
formation I(X;Y) [92]. The method is better than modularity optimization,
especially when communities are of different size. The optimization of the mu-
tual information is performed by simulated annealing, so the method is rather
slow and can be applied to graphs with up to about 10* vertices.

6 Testing Methods

When a community detection algorithm is designed, it is necessary to test its
performance, and compare it with other methods. Ideally, one would like to
have graphs with known community structure and check whether the algorithm
is able to find it, or how closely can come to it. In any case, one needs to com-
pare partitions found by the method with “real” partitions. How can different
partitions of the same graph be compared? Danon et al. [93] used a measure
borrowed from information theory, the normalized mutual information. One
builds a confusion matriz N, whose element NN;; is the number of vertices of
the real community ¢ that are also in the detected community j. Since the
partitions to be compared may have different numbers of clusters, N is usually
not a square matrix. The similarity of two partitions A and B is given by the
following expression

(A, B) = 2372 3752 Nijlog(NijN/N;. N ;) @)
, > ity Ni. log(Ni./N)+Z;i1 N jlog(N;/N)’

where cp (c4) is the number of communities in partition A (B), N;. is the sum
of the elements of N on row 7 and N ; is the sum of the elements of N on column
j. Another useful measure of similarity between partitions is the Jaccard index,
which is regularly used in scientometric research. Given two partitions A and
B, the Jaccard index is defined as

n11
1;(A,B) = ——M| 9
() n11 + No1 + Nio ©)
where n11 is the number of pairs of vertices which are in the same community
in both partitions and ng; (n19) denotes the number of pairs of elements which
are put in the same community in A (B) and in different communities in B (A).
A nice presentation of criteria to compare partitions can be found in Ref. [94].

30

Figure 11: Benchmark of Girvan and Newman. The three pictures correspond
to zin = 15 (a), zip, = 11 (b) and 2, = 8 (¢). In (c) the four groups are
basically invisible. Reprinted figure with permission from Guimera R, Amaral
LAN, Nature 433, 895 (2005). Copyright 2005 by the Nature Publishing Group.

In the literature on community detection, algorithms have been generally
tested on two types of graphs: computer generated graphs and real networks.
The most famous computer generated benchmark is a class of graphs designed by
Girvan and Newman [T4]. Each graph consists of 128 vertices, arranged in four
groups with 32 vertices each: 1 —32, 33 — 64, 65 — 96 and 97 — 128. The average
degree of each vertex is set to 16. The density of edges inside the groups is
tuned by a parameter z;,, expressing the average number of edges shared by each
vertex of a group with the other members (internal degree). Naturally, when z;,
is close to 16, there is a clear community structure (see Fig.[ITh), as most edges
will join vertices of the same community, whereas when z;, <= 8 there are more
edges connecting vertices of different communities and the graph looks fuzzy (see
Fig. [Ik). In this way, one can realize different degrees of mixing between the
groups. In this case the test consists in calculating the similarity between the
partitions determined by the method at study and the natural partition of the
graph in the four equal-sized groups. The similarity can be calculated by using
the measure of Eq. Bl but in the literature one used a different quantity, i.e.
the fraction of correctly classified vertices. A vertex is correctly classified if it
is in the same cluster with at least 16 of its “natural” partners. If the model
partition has clusters given by the merging of two or more natural groups,
all vertices of the cluster are considered incorrectly classified. The number of
correctly classified vertices is then divided by the total size of the graph, to yield
a number between 0 and 1. One usually builds many realizations of the graph
for a particular value of z;, and computes the average fraction of correctly
classified vertices, which is a measure of the sensitivity of the method. The
procedure is then iterated for different values of z;,. Many different algorithms
have been compared with each other according to the diagram where the fraction
of correctly classified vertices is plotted against z;,. Most algorithms usually do
a good job for large z;, and start to fail when z;, approaches 8. The recipe to
label vertices as correctly or incorrectly classified is somewhat arbitrary, though,
and measures like those of Eqgs. B and [are probably more objective. There is
also a subtle problem concerning the reliability of the test. Because of the

31

Figure 12: Zachary’s karate club network, an example of graph with known
community structure. Reprinted figure with permission from Newman MEJ,
Girvan M, Physical Review E 69, 026113, 2004. Copyright 2004 by the Americal
Physical Society.

randomness involved in the process of distributing edges among the vertices,
it may well be that, in specific realizations of the graph, some vertices share
more edges with members of another group than of their own. In this case, it is
inappropriate to consider the initial partition in four groups as the real partition
of the graph.

Tests on real networks usually focus on a limited number of examples, for
which one has precise information about the vertices and their properties.

The most popular real network with a known community structure is the
social network of Zachary’s karate club (see Fig. [[2]). This is a social network
representing the personal relationships between members of a karate club at an
American university. During two years, the sociologist Wayne Zachary observed
the ties between members, both inside and outside the club [95]. At some point,
a conflict arose between the club’s administrator (vertex 1) and one of the teach-
ers (vertex 33), which led to the split of the club in two smaller clubs, with some
members staying with the administrator and the others following the instruc-
tor. Vertices of the two groups are highlighted by squares and circles in Fig.
The question is whether the actual social split could be predicted from the net-
work topology. Several algorithms are actually able to identify the two classes,
modulo a few intermediate vertices, which may be misclassified (e.g. vertices 3,
10). Other methods are less successful: for instance, the maximum of Newman-
Girvan modularity corresponds to a split of the network in four groups [53] 63].
It is fundamental however to stress that the comparison of community struc-
tures detected by the various methods with the split of Zachary’s karate club
is based on a very strong assumption: that the split actually reproduced the
separation of the social network in two communities. There is no real argument,
beyond common wisdom, supporting this assumption.

Two other networks have frequently been used to test community detection

32

algorithms: the network of American college football teams derived by Girvan
and Newman [I4] and the social network of bottlenose dolphins constructed by
Lusseau [96]. Also for these networks the caveat applies: Nothing guarantees
that “reasonable” communities, defined on the basis of non-topological infor-
mation, must coincide with those detected by methods based only on topology.

7 The Mesoscopic Description of a Graph

Community detection algorithms have been applied to a huge variety of real
systems, including social, biological and technological networks. The partitions
found for each system are usually similar, as the algorithms, in spite of their spe-
cific implementations, are all inspired by close intuitive notions of community.
What are the general properties of these partitions? The analysis of partitions
and their properties delivers a mesoscopic description of the graph, where the
communities, and not the vertices, are the elementary units of the topology.
The term mesoscopic is used because the relevant scale here lies between the
scale of the vertices and that of the full graph. A simple question is whether
the communities of a graph are usually about of the same size or whether the
community sizes have some special distribution. It turns out that the distri-
bution of community sizes is skewed, with a tail that obeys a power law with
exponents in the range between 1 and 3 [I3] [22] 23] [47]. So, there seems to be
no characteristic size for a community: small communities usually coexist with
large ones. As an example, Fig. [[3] shows the cumulative distribution of com-
munity sizes for a recommendation network of the online vendor Amazon.com.
Vertices are products and there is a connection between item A and B is B was
frequently purchased by buyers of A. We remind that the cumulative distribu-
tion is the integral of the probability distribution: if the cumulative distribution
is a power law with exponent a, the probability distribution is also a power law
with exponent a + 1.

If communities are overlapping, one could derive a network, where the com-
munities are the vertices and pairs of vertices are connected if their correspond-
ing communities overlap [13]. Such networks seem to have some special proper-
ties. For instance, the degree distribution is a particular function, with an initial
exponential decay followed by a slower power law decay. A recent analysis has
shown that such distribution can be reproduced by assuming that the graph
grows according to a simple preferential attachment mechanism, where commu-
nities with large degree have an enhanced chance to interact/overlap with new
communities [21].

Finally, by knowing the community structure of a graph, it is possible to
classify vertices according to their roles within their community, which may al-
low to infer individual properties of the vertices. A nice classification has been
proposed by Guimerd and Amaral [12] [97]. The role of a vertex depends on the
values of two indices, the z-score and the participation ratio, that determine
the position of the vertex within its own module and with respect to the other
modules. The z-score compares the internal degree of the vertex in its module

33

—— amazon0308
—— guide, a=-2.045

1-cdf, P(k>x)
8\
»

10

10 ‘ ‘ ‘ ‘ ‘
10 10 10° 10° 10 10 10
community size

Figure 13: Cumulative distribution of community sizes for the Amazon pur-
chasing network. The partition is derived by greedy modularity optimization.
Reprinted figure with permission from Clauset A, Newman MEJ and Moore C,
Physical Review E 70, 066111, 2004. Copyright 2004 by the Americal Physical
Society.

with the average internal degree of the vertices in the module. The participation
ratio says how the edges of the vertex are distributed among the modules. Based
on these two indices, Guimera and Amaral distinguish seven roles for a vertex.
These roles seem to be correlated to functions of vertices: in metabolic net-
works, for instance, vertices sharing many edges with vertices of other modules
(“connectors”) are often metabolites which are more conserved across species
than other metabolites, i.e. they have an evolutionary advantage [12].

8 Future Directions

The problem of community detection is truly interdisciplinary. It involves sci-
entists of different disciplines both in the design of algorithms and in their ap-
plications. The past years have witnessed huge progresses and novelties in this
topic. Many methods have been developed, based on various principles. Their
scalability has improved by at least one power in the graph size in just a couple
of years. Currently partitions in graphs with up to millions of vertices can be
found. From this point of view, the limit is close, and future improvements in
this sense are unlikely. Algorithms running in linear time are very quick, but
their results are often not very good.

The major breakthrough introduced by the new methods is the possibility
of extracting graph partitions with no preliminary knowledge or inputs about

34

the community structure of the graph. Most new algorithms do not need to
know how many communities there are, a major drawback of computer science
approaches: they derive this information from the graph topology itself. Sim-
ilarly, algorithms of new generation are able to select one or a few meaningful
partitions, whereas social science approaches usually produce a whole hierar-
chy of partitions, which they are unable to discriminate. Especially in the last
two years, the quality of the output produced by some algorithms has consider-
ably improved. Realistic aspects of community structure, like overlapping and
hierarchical communities, are now often taken into account.

The main question is: is there at present a good method to detect commu-
nities in graphs? The answer depends on what is meant by “good”. Several
algorithms give satisfactory results when they are tested as described in Sec-
tion [6F in this respect, they can be considered good. However, if examined in
more detail, some methods disclose serious limits and biases. For instance, the
most popular method used nowadays, modularity optimization, is likely to give
problems in the analysis of large graphs. Most algorithms are likely to fail in
some limit, still one can derive useful indications from them: from the compar-
ison of partitions derived by different methods one could extract the cores of
real communities. The ideal method is one that delivers meaningful partitions
and handles overlapping communities and hierarchy, possibly in a short time.
No such method exists yet.

Finding a good method for community detection is a crucial endeavour in
biology, sociology and computer science. In particular, biologists often rely
on the application of clustering techniques to classify their data. Due to the
bioinformatics revolution, gene regulatory networks, protein-protein interaction
networks, metabolic networks, etc., are now much better known that they used
to be in the past and finally susceptible to solid quantitative investigations.
Uncovering their modular structure is an open challenge and a necessary step
to discover properties of elementary biological constituents and to understand
how biological systems work.

References

[1] Euler L (1736) Solutio problematis ad geometriam situs pertinentis. Com-
mentarii Academiae Petropolitanae, Vol 8, pp 128-140

[2] Bollobas B (1998) Modern Graph Theory. Springer Verlag, New York (USA).

[3] Wasserman S, Faust K (1994) Social Network Analysis: Methods and Ap-
plications. Cambridge University Press, Cambridge (UK).

[4] Scott JP (2000) Social Network Analysis. Sage Publications Ltd., London
(UK).

[5] Barabdsi Al, Albert R (2002) Statistical mechanics of complex networks.
Reviews of Modern Physics, Vol 74, pp 47-97

35

[6] Dorogovtsev SN, Mendes JFF (2003) Evolution of Networks: from biological
nets to the Internet and WWW. Oxford University Press, Oxford (UK)

[7] Newman MEJ (2003) The structure and function of complex networks. STAM
Review, Vol 45, pp 167-256

[8] Pastor-Satorras R, Vespignani A (2004) Evolution and structure of the Inter-
net: A statistical physics approach. Cambridge University Press, Cambridge
(UK)

[9] Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex
Networks: Structure and Dynamics. Physics Reports, Vol 424, pp 175-308

[10] Erdos P, Rényi A (1959) On Random Graphs. Publicationes Mathematicae
Debrecen, Vol 6, pp 290-297

[11] Flake GW, Lawrence S, Lee Giles C, Coetzee FM (2002) Self-Organization
and Identification of Web Communities. IEEE Computer, Vol 35, No 3, pp
66-71

[12] Guimera R, Amaral LAN (2005) Functional cartography of complex
metabolic networks. Nature 433, pp 895-900

[13] Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping
community structure of complex networks in nature and society. Nature, Vol
435, pp 814-818

[14] Girvan M, Newman MEJ (2002) Community structure in social and biolog-
ical networks. Proceedings of the National Academy of Science of the USA,
Vol 99, No 12, pp 7821-7826

[15] Lusseau D, Newman MEJ (2004) Identifying the role that animals play in
their social networks. Proceedings of the Royal Society of London B, Vol
271, pp S477-5481

[16] Pimm SL (1979) The structure of food webs. Theoretical Population Bi-
olology, Vol 16, pp 144-158

[17] Krause AE, Frank KA, Mason DM, Ulanowicz RE, Taylor WW (2003)
Compartments exposed in food-web structure. Nature, Vol 426, p 282-285

[18] Granovetter M (1973) The Strength of Weak Ties. American Journal of
Sociology, Vol 78, pp 1360-1380

[19] Burt RS (1976) Positions in Networks. Social Forces, Vol 55, No 1, pp
93-122

[20] Freeman LC (1977) A Set of Measures of Centrality Based on Betweenness.
Sociometry, Vol 40, No 1, pp 35-41

36

[21] Pollner P, Palla G, Vicsek T (2006) Preferential attachment of communities:
The same principle, but a higher level. Europhysics Letters, Vol 73, No 3,
pp 478-484

[22] Newman MEJ (2004) Detecting community structure in networks. Euro-
pean Physical Journal B, Vol 38, pp 321-330

[23] Danon L, Duch J, Arenas A, Diaz-Guilera A (2007) Community structure
identification. Large Scale Structure and Dynamics of Complex Networks:
From Information Technology to Finance and Natural Science, Caldarelli G
and Vespignani A, Eds., World Scientific, Singapore, pp 93-114

[24] Bron C, Kerbosch J (1973) Finding all cliques on an undirected graph.
Communications of ACM, Vol 16, pp 575577

[25] Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining and
identifying communities in networks. Proceedings of the National Academy
of Science of the USA, Vol 101, No 9, pp 26582663

[26] Newman MEJ, Girvan M (2004) Finding and evaluating community struc-
ture in networks. Physical Review E, Vol 69, 026113

[27] Arenas A, Ferndndez A, Fortunato S, Gémez S (2007) Motif-based com-
munities in complex networks. Eprint larXiv:0710.0059 in www.arxiv.org

[28] Reichardt J, Bornholdt S (2006) Statistical mechanics of community detec-
tion. Physical Review E, Vol 74, 016110

[29] Massen CP, Doye JPK (2006) Thermodynamics of community structure.
Eprint cond-mat /0610077 in www.arxiv.org

[30] Arenas A, Duch J, Ferndndes A, Gémez S (2007) Size reduction of complex
networks preserving modularity. New Journal of Physics, Vol 9, No 6, pp
176-180

[31] Guimera R, Sales-Pardo M, Amaral LAN (2004) Modularity from fluctua-
tions in random graphs and complex networks. Physical Review E, Vol 70,
025101(R)

[32] Fortunato S, Barthélemy M (2007) Resolution limit in community detec-
tion. Proceedings of the National Academy of Science of the USA, Vol 104,
No 1, pp 36-41

[33] Gfeller D, Chappelier J-C, De Los Rios P (2005) Finding instabilities in
the community structure of complex networks. Physical Review E, Vol 72,
056135

[34] Pothen A (1997) Graph partitioning algorithms with applications to scien-
tific computing. In Parallel Numerical Algorithms, Keyes DE, Sameh A and
Venkatakrishnan V, Eds., Kluwer Academic Press, pp 323-368

37

http://arXiv.org/abs/0710.0059
http://arXiv.org/abs/cond-mat/0610077

[35] Kernighan BW, Lin S (1970) An efficient heuristic procedure for partition-
ing graphs. The Bell System Technical Journal, Vol 49, pp 291-307

[36] Golub GH, Van Loan CF (1989) Matrix computations. John Hopkins Uni-
versity Press, Baltimore, MD, USA

[37] J. B. MacQueen (1967) Some methods for classification and analysis of mul-
tivariate observations. Proceedings of 5-th Berkeley Symposium on Mathe-
matical Statistics and Probability, Berkeley, University of California Press,
pp 281-297

[38] Brandes, U (2001) A faster algorithm for betweenness centrality. Journal
of Mathematical Sociology, Vol 25, No 2, pp 163-177

[39] Newman MEJ (2005) A measure of betweenness centrality based on random
walks. Social Networks, Vol 27, pp 39-54

[40] Tyler JR, Wilkinson DM, Huberman BA (2003) Email as spectroscopy:
automated discovery of community structure within organizations. Proceed-
ing of the First International Conference on Communities and Technologies,
Huysman M, Wenger E and Wulf V, Eds., Kluwer Academic Press, Amster-
dam.

[41] Wilkinson DM, Huberman BA (2004) A method for finding communities of
related genes. Proceedings of the National Academy of Science of the USA,
Vol 101, Suppl 1, pp 5241-5248

[42] Latora V, Marchiori M (2001) Efficient behavior of small-world networks.
Physical Review Letters, Vol 87, 198701

[43] Fortunato S, Latora V, Marchiori M (2004) A method to find commu-
nity structures based on information centrality. Physical Review E, Vol 70,
056104

[44] Watts D, Strogatz SH (1998) Collective dynamics of “small-world” net-
works. Nature, Vol 393, pp 440442

[45] Brandes U, Delling D, Gaertler M, Gorke R, Hoefer M, Nikoloski Z, Wagner
D (2007) On finding graph clusterings with maximum modularity. Proceed-
ings of the 33rd International Workshop on Graph-Theoretical Concepts in
Computer Science (WG’07), Springer Verlag, Berlin-Heidelberg, Germany.

[46] Newman MEJ (2004) Fast algorithm for detecting community structure in
networks. Physical Review E, Vol 69, 066133

[47] Clauset A, Newman MEJ, Moore C (2004) Finding community structure
in very large networks. Physical Review E, Vol 70, 066111

[48] Danon L, Diaz-Guilera A, Arenas A (2006) The effect of size heterogene-
ity on community identification in complex networks. Journal of Statistical
Mechanics: Theory and Experiment, Issue 11, P11010

38

[49] Pujol JM, Béjar J, Delgado J (2006) Clustering algorithm for determining
community structure in large networks. Physical Review E, Vol 74, 016107

[50] Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated
annealing. Science, Vol 220, No 4598, pp 671-680

[51] Massen CP, Doye JPK (2005) Identifying communities within energy land-
scapes. Physical Review E, Vol 71, 046101

[52] Boettcher S, Percus AG (2001) Optimization with extremal dynamics.
Physical Review Letters, Vol 86, pp 5211-5214

[63] Duch J, Arenas A (2005) Community detection in complex networks using
extremal optimization. Physical Review E, Vol 72, 027104

[64] Newman MEJ (2006) Modularity and community structure in networks.
Proceedings of the National Academy of Science of the USA, Vol 103, No.
93, pp 85778582

[65] Newman MEJ (2006) Finding community structure in networks using the
eigenvectors of matrices. Physical Review E, Vol 74, 036104

[56] Reichardt J, Bornholdt S (2007) Partitioning and modularity of graphs
with arbitrary degree distribution. Physical Review E, Vol 76, 015102(R)

[67] Reichardt J, Bornholdt S (2006) When are networks truly modular? Phys-
ica D, Vol 224, pp 2026

[58] Kumpula JM, Saraméki J, Kaski K, Kertész J (2007) Limited resolution
in complex network community detection with Potts model approach. Eu-
ropean Physical Journal B, Vol 56, pp 41-45

[59] Arenas A, Ferndndes A, Gémez S (2007) Multiple resolution of the modular
structure of complex networks. Eprint physics/0703218 at www.arxiv.org

[60] Ruan J, Zhang W (2007) Identifying network communities with high res-
olution. Eprint arXiv: 0704.3759 in www.arxiv.org, to appear in Physical
Review E

[61] Kumpula JM, Saramiki J, Kaski K, Kertész J (2007) Limited resolu-
tion and multiresolution methods in complex network community detection.
Noise and Stochastics in Complex Systems and Finance, Kertész J, Born-
holdt S and Mantegna RN, Eds. Proceedings of the SPIE, Vol 6601, pp
660116

[62] Muff S, Rao F, Caflisch A (2005) Local modularity measure for network
clusterizations. Physical Review E, Vol 72, 056107

[63] Donetti L, Munoz MA (2004) Detecting network communities: a new sys-
tematic and efficient algorithm. Journal of Statistical Mechanics: Theory
and Experiment, P10012

39

http://arXiv.org/abs/physics/0703218

[64] Capocci A, Servedio VDP, Caldarelli G, Colaiori F (2004) Detecting com-
munities in large networks. Physica A, Vol 352, No 2-4, pp 669-676

[65] Wu F, Huberman BA (2004) Finding communities in linear time: a physics
approach. European Physical Journal B, Vol 38, pp 331-338

[66] Eriksen KA, Simonsen I, Maslov S, Sneppen K (2003) Modularity and
extreme edges of the Internet. Physical Review Letters, Vol 90, No 14, 148701

[67] Simonsen I, Eriksen KA, Maslov S, Sneppen K (2004) Diffusion on complex
networks: a way to probe their large-scale topological structure. Physica A,
Vol 336, pp 163-173

[68] Wu FY (1982) The Potts model. Reviews of Modern Physics, Vol 54, pp
235268

[69] Blatt M, Wiseman S, Domany E (1996) Superparamagnetic clustering of
data. Physical Review Letters, Vol 76, No 18, pp 3251-3254

[70] Reichardt J, Bornholdt S (2004) Detecting fuzzy community structure in
complex networks. Physical Review Letters, Vol 93, No 21, 218701

[71] Reichardt J, Bornholdt S (2006) Statistical mechanics of community detec-
tion Physical Review E, Vol 74, 016110

[72] Mezard M, Parisi G, Virasoro M (1987) Spin glass theory and beyond.
World Scientific Publishing Company, Singapore.

[73] Zhou H (2003) Network landscape from a Brownian particle’s perspective.
Physical Review E, Vol 67, 041908

[74] Zhou H (2003) Distance, dissimilarity index, and network community struc-
ture. Physical Review E, Vol 67, 061901

[75] Zhou H, Lipowsky R (2004) Network Brownian motion: A new method to
measure vertex-vertex proximity and to identify communities and subcom-
munities. Lecture Notes in Computer Science, Vol 3038, pp 1062—-1069

[76] Latapy M, Pons P 92005) Computing communities in large networks using
random walks. Lecture Notes in Computer Science, Vol 3733, pp 284-293

[77] Arenas A, Diaz-Guilera A, Pérez-Vicente CJ (2006) Synchronization reveals
topological scales in complex networks. Physical Review Letters, Vol 96,
114102

[78] Kuramoto Y (1984) Chemical Oscillations, Waves and Turbulence.
Springer-Verlag, Berlin, Germany

[79] Arenas A, Diaz-Guilera A (2007) Synchronization and modularity in com-
plex networks. European Physical Journal ST, Vol 143, pp 19-25

40

[80] Boccaletti S, Ivanchenko M, Latora V, Pluchino A, Rapisarda A (2007)
Detecting complex network modularity by dynamical clustering. Physica
Review E, Vol 76, 045102(R)

[81] Pluchino A, Latora V, Rapisarda A (2005) Changing opinions in a changing
world: a new perspective in sociophysics. International Journal of Modern
Physics C, Vol 16, No 4, pp 505-522

[82] Farkas I, bel D, Palla G, Vicsek T (2007) Weighted network modules. New
Journal of Physics, Vol 9, pp 180

[83] Palla G, Farkas 1J, Pollner P, Derényi I, Vicsek T (2007) Directed network
modules. New Journal of Physics, Vol 9, pp 186

[84] Palla G, Barabési A-L, Vicsek T (2007) Quantifying social groups evolution.
Nature, Vol 446, pp 664—667

[85] van Dongen S (2000) Graph Clustering by Flow Simulation. PhD thesis,
University of Utrecht, Netherlands

[86] Newman MEJ, Leicht E (2007) Mixture models and exploratory analysis
in networks. Proceedings of the National Academy of Science of the USA,
Vol 104, No 23, pp 95649569

[87] Bagrow JP, Bollt EM (2005) Local method for detecting communities.
Physical Review E, Vol 72, 046108

[88] Clauset A (2005) Finding local community structure in networks. Physical
Review E, Vol 72, 026132

[89] Eckmann J.-P, Moses E (2002) Curvature of co-links uncovers hidden the-
matic layers in the World Wide Web. Proceedings of the National Academy
of Science of the USA, Vol 99, No 9, pp 5825-5829

[90] Sales-Pardo M, Guimerd R, Amaral LAN (2007) Extracting the hierarchical
organization of complex systems. Eprint arXiv:0705.1679 in www.arxiv.org

[91] Rosvall M, Bergstrom CT (2007) An information-theoretic framework for
resolving community structure in complex networks. Proceedings of the Na-
tional Academy of Science of the USA, Vol 104, No 18, pp 7327-7331

[92] Shannon CE, Weaver V (1949) The Mathematical Theory of Communica-
tion. University of Illinois Press, Champaign, USA

[93] Danon L, Diaz-Guilera A, Duch J, Arenas A (2005) Comparing commu-
nity structure identification. Journal of Statistical Mechanics: Theory and
Experiment, P09008

[94] Gustafsson M, Hérnquist M, Lombardi A (2006) Comparison and validation
of community structures in complex networks. Physica A, Vol 367, pp 559—
576

41

http://arXiv.org/abs/0705.1679

[95] Zachary WW (1977) An information flow model for conflict and fission in
small groups. Journal of Anthropological Research, Vol 33, pp 452473

[96] Lusseau D (2003) The emergent properties of a dolphin social network.
Proceedings of the Royal Society of London B, Vol 270 (Suppl. 2), pp S186—
188

[97] Guimerd R, Amaral LAN (2005) Cartography of complex networks: mod-
ules and universal roles. Journal of Statistical Mechanics: Theory and Ex-
periment, P02001

42

	Introduction
	Elements of Community Detection
	Definition of Community
	Evaluating Partitions: Quality Functions
	Hierarchies
	Overlapping Communities

	Computer Science: Graph Partitioning
	Social Science: Hierarchical and K-Means Clustering
	New Methods
	Divisive Algorithms
	Modularity Optimization
	Spectral Algorithms
	Dynamic Algorithms
	Clique Percolation
	Other Techniques

	Testing Methods
	The Mesoscopic Description of a Graph
	Future Directions

