
1. Bartendr Dynamic Programming: 
 The energies required to transfer a frame at each of the 6 slots are the following: slot 
1=1000 mJ, slot 2=1500 mJ, slot 3=700mJ slot 4=500mJ, slot 5=2000mJ and slot 6=110mJ. 
The tail time (time during which Radio-card is ON after sending a frame) is half of the slot 
time and Tail Energy is 600 mJ. 

E3,6 = Optimal Energy to schedule 3 frames in 6 slots 

 

E t=1 t=2 t=3 t=4 t=5 t=6 
k=0 0 0 0 0 0 0 
k=1 E1,1=1600 

Last1,1=0 
E1,2=1600 
Last1,2=0 

E1,3=1300 
Last1,3=2 

E1,4=1100 
Last1,4=3 

E1,5=1100 
Last1,5=3 

E1,6=770 
Last1,6=5 

k=2  E2,2=3100 
Last2,2=1 

E2,3=2800 
Last2,3=2 

E2,4=1800 
Last2,4=3 

E2,5=1800 
Last2,5=3 

E2,6=1800 
Last2,6=3 

k=3   E3,3=3800 
Last3,3=2 

E3,4=3300 
Last3,4=3 

E3,5=3300 
Last3,5=3 

E3,6=2510 
Last3,6=5 

 

Optimal Energy = 2510 mJ   Optimal Slots 3,4,6 

 

2. i) 

We have not mentioned anything about hand repositioning in the question. So, students may 
or may not draw the axis plots for hand repositioning. 

I have taken care of hand repositioning within charater. Somebody may take care of Inter-
Character hand repositioning also.  



 

ii) Edit distances b/w “ITILL” and “STILL”=1   &         “ITILL” and “HILL”=2 

But the right choice should be HILL because “H” (written in air) can be wrongly detected as 
“IT” by Phone point pen. 

 

3. i) 

 

 

Z2-2500= (1/10-1/25)*50*2000 = (15*50*2000)/250=6000 

Z2=8500 units 

 

ii)  Any 3 of the following 4 points 
a) The first source of control-flow graph ambiguity involves the class hierarchy. 
b) Second, the possible values that each term in a comparison can take must be known to 

determine which paths through a program are feasible. 
 

In addition, there are two last potential sources of ambiguity:  
c) native code and  
d) the reflection language feature. 

 
iii) Typically, the bytecode that runs in a Dalvik virtual machine is from the file embedded in 
the app or the framework itself. For extensibility, Android provides a mechanism that can be 



used to load and execute bytecode from an arbitrary source at run-time. Specifically, an app 
can leverage the DexClassLoader feature to load classes from embedded .jar and .apk files.  
 
The dynamic loading of new class files could potentially change the code to run and thus 
reduce the effectiveness of static-analysis efforts. On the other hand, we cannot consider all 
apps with dynamic loading behavior malicious, because this behavior can be used 
legitimately. For example, apps can use this mechanism to update their functionality without 
reinstalling the app itself. 
 
iv) 

  
 
No. of Samples = N= (10*1024) / 1 =10240 
f= 100 samples/second 
S=1 KB 
B=100KBPS 
Thidle    = 100 ms 
 
N/f =102.4 sec 
(N*S)/B=10240/100 =102.4 sec 
 
N/f-(N*S)/B =0 < Thidle 
So,  Et = 950 * 10-3 W* 102.4 sec = 97.28 Joule 
 
 

v) The advantage of using a virtual machine is twofold – firstly, the app code is isolated from 
the core operating system, ensuring that should something go wrong, it’s contained in an 
isolated environment and does not effect the primary OS.  

And secondly, it allows for cross-compatibility, meaning even if an app is compiled on 
another platform (such as a PC, as is usually the case with developing mobile apps) , they can 
still be executed on the mobile platform using the virtual machine. 

 
 











 

8(a)  
 
The mood inference engine consists of two software components one residing in the 
phone while other in the cloud. The phone side software collects smartphone usage logs 
and user mood labels, on behalf of the cloud. The cloud is responsible for training a 
predictive mood model using these data, which is provided back to the smartphone. By 
applying this model the phone is able to locally infer user mood without the aid of the 
cloud. 
 
(b) To reduce the size of the feature space the system uses sequential forward selection 
algorithm.  
In SFS, the system attempts to pick a subset Y of the feature table that will give the best 
regression. In the SFS algorithm, Y starts out as an empty set. SFS then iterates, finding 
the feature x which is not already in Y that provides the best fit to the data, minimizing 
the mean error of the fit. It then adds x to Y and continues to iterate. SFS will stop 
running when it reaches a local minimum; at this point, adding any of the remaining 
features will increase the error. Through this process, SFS appropriately selects the data’s 



most representative features, reducing the dimensionality. 
8.c) 
Limitation:  
While personalized models report high accuracy, they require individual training over a 
long period of time.  
 
 
Hybrid Mood Model 
 
An ideal mood model would blend together the respective strengths of the personalized 
(high accuracy) and all user (no user training) modeling approaches. We investigate 
hybrid mood model design choices that combine a small amount of user specific training 
data with larger amounts of training data collected from the general user population. To 
test a hybrid approach, we fit a multi-linear regression model with a modified objective 
function that prioritizes reducing residual errors related to personalized training data 
above errors related to training data sourced from the rest of the population. As a result, 
the hybrid model is able to incorporate unique characteristics in how an individual user's 
smartphone data relate to their mood while also capturing the coarse-grain patterns that 
are common across all people. Through our experiments we find the accuracy of the 
hybrid model is naturally sensitive to the weighting, i.e., prioritization, placed on 
personalized data residual errors relative to data from the general population; we 
determine this weighting term empirically by performing a conventional grid parameter 
search that minimizes MSE error. 
 

 
 
          

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Pleasure training accuracy vs. training data size 

 
Figure 1 examines the MSE accuracy of our hybrid model when incrementally trained 
with increasing amounts of user-specific training data. In this figure, we compare the 
hybrid approach with user training data to an incrementally trained personalized model 



with no prior training data. We also represent the accuracy of the all-user model (66%) 
and personalized model (93%) as reference points. We find that even with only 10 days of 
personalized training data, the hybrid model has higher MSE accuracy than the 
incremental personalized by 31% and the all user model by 6%. After 30 days, the 
personalized model outperforms the hybrid model and can be used with greater than  
75% accuracy. 
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