
OverLay: Practical Mobile Augmented Reality

Puneet Jain
Duke University

Durham, NC, USA
puneet.jain@duke.edu

Justin Manweiler
IBM Research

Yorktown Heights, NY, USA
jmanweiler@us.ibm.com

Romit Roy Choudhury
University of Illinois

Urbana-Champaign, IL, USA
croy@illinois.edu

ABSTRACT
The idea of augmented reality – the ability to look at a phys-
ical object through a camera and view annotations about the
object – is certainly not new. Yet, this apparently feasible vi-
sion has not yet materialized into a precise, fast, and compre-
hensively usable system. This paper asks: What does it take to
enable augmented reality (AR) on smartphones today? To build
a ready-to-use mobile AR system, we adopt a top-down ap-
proach cutting across smartphone sensing, computer vision,
cloud offloading, and linear optimization. Our core contri-
bution is in a novel location-free geometric representation of
the environment – from smartphone sensors – and using this
geometry to prune down the visual search space. Metrics of
success include both accuracy and latency of object identi-
fication, coupled with the ease of use and scalability in un-
controlled environments. Our converged system, OverLay, is
currently deployed in the engineering building and open for
use to regular public; ongoing work is focussed on campus-
wide deployment to serve as a “historical tour guide” of UIUC.
Performance results and user responses thus far have been
promising, to say the least.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and
Software

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Augmented Reality, Gyroscope, Localization, Mobile, Tagging

1. INTRODUCTION
The concept of mobile augmented reality is tantalizing. Re-
searchers, designers, and the authors of science fiction have
converged on the vision of using a hand-held camera as a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiSys’15, May 18–22, 2015, Florence, Italy.
Copyright c© 2015 ACM 978-1-4503-3494-5/15/05 ...$15.00.
http://dx.doi.org/10.1145/2742647.2742666.

sort of “magnifying glass” to browse the physical world. Dig-
ital annotations may seamlessly appear when the camera is
pointed at an object. Looking at spaghetti in a grocery store
may trigger recipes and product reviews; pointing the cam-
era at a sculpture in a museum may pop up the artist’s bio
data; viewing a corridor in an airport can display restaurants
located downstream in that path. Despite such exciting po-
tential applications, a generic and usable solution remains
elusive. The core challenge lies in carefully mitigating the
tradeoff between accuracy and latency, i.e., the ability to pre-
cisely recognize an object and pop-up its annotation without
perceivable time-lag. Given that hundreds of objects may be
annotated in the same vicinity, slight inaccuracies or delays
can degrade the quality of human experience. Moreover, au-
thoring and retrieving annotations should be simple, and on
the spot. If Alice is the first to annotate a painting in a mu-
seum, Bob should be able to view her annotation in the very
next moment.

It is natural to wonder why this is not a solved problem de-
spite substantial research in augmented reality. We began this
project with the same question and realized that while several
prototypes have been built in isolation – each making tech-
nical contributions in vision, sensing, and even information
fusion – to the best of our knowledge, no system has made a
holistic effort end to end [11,13,20,35,41].

Pure sensor based approaches such as Wikitude [9] rely on
the smartphone GPS to position the camera, the compass to
infer direction, and the accelerometer to identify the tilt. By
computing the camera’s 3D line of sight (LoS) from these
data, Wikitude estimates the object that should be within the
camera’s viewfinder, and pops up the corresponding annota-
tion. Unfortunately, sensory data has proven largely insuffi-
cient. Compass error measurable in tens of degrees severely
derails the LoS accuracy; GPS errors of 5m or more exacer-
bates the condition. The application works when large ob-
jects are located near the camera, such as a user looking at
the White House while standing at its fenced perimeter. For
less favorable cases, especially when the annotation density
is high, results are far from acceptable. Indoor environments
lacking precise localization are of course out of scope.

In contrast to sensory approaches, computer vision enables a
tradeoff of latency for better accuracy. Latency arises from
matching the image in the camera’s view against various im-
ages in the annotated database. When the match occurs, the
results are precise – the annotation perfectly pops up on the
screen atop the object. However, in uncontrolled environ-
ments, users view an object from different angles, under dif-

ferent lighting conditions, and from different distances – all
adding to the complexity of the problem. If the database con-
tains many images of the same object (e.g., Alice and many
others have annotated the same painting), image matching
exploits this diversity to gain robustness. However, it takes
longer. With only one or few images in the database per ob-
ject, the operation is faster, but at the cost of accuracy.

Recent years have witnessed hybrid approaches that fuse sen-
sor data and computer vision [24, 28, 33]. By utilizing the
location of the user and orientation of the phone, authors
in [38] prune the search space for image matching. This cer-
tainly offers improvement, however, the lack of precise lo-
cation and large compass fluctuations make them unreliable
indoors. The latency is also in the order of several seconds,
requiring users to take a picture and wait for the annotation.
Real-time object browsing – like a magnifying lens – really
warrants sub-second latency.

Based on extensive literature search, we conclude that de-
spite meaningful technical advances, and many released apps
and media articles, no single effort has fully delivered on the
complete vision. There are holes in the end to end process-
ing pipeline – achieving the strict latency and accuracy targets
would warrant a holistic look at the system. The system also
needs to relax any assumptions on location to be deployable
universally in the near future. Finally, sheer engineering is
necessary to cope with corner cases in uncontrolled environ-
ments, including hand vibrations in some users, some objects
being identical, weak network connections, etc.

We aim to complete and test the vision – to deliver, from a
top-down design, a viable mobile AR framework that enables
a useable and rewarding experience. While many of the chal-
lenges that must be addressed are not fundamental, they are
“hard” and previously undemonstrated. It needed many de-
sign iterations to get the pipeline sufficiently optimized so
that a viable solution could even be within grasp. Initially,
we expected our efforts to be primarily engineering. However,
we also found ripe opportunity for novel heuristics to improve
accuracy, responsiveness, and ultimately, the human user expe-
rience. Especially, we developed an optimization framework
that underpins computer vision with a geometric representa-
tion of objects in the surroundings. We are able to learn that
geometry from the natural human movements across space
and time, bringing the system to a desirable level of robust-
ness.

Finally, we evaluate our approach not only through micro
benchmarks, but also live, through the natural usage of in-
dependent and unbiased volunteers. For the first time, we
were able to observe real human behaviors when interacting
with a viable mobile AR solution.

In developing our solution, we learned the key contribution
of this paper: Mobile AR is best addressed not through sensing,
computer vision, or any modality in isolation. Instead, each
may be most advantageously combined within a stateful model,
underpinned by the geometry and time of motion. With this
spatiotemporal awareness, its possible to deliver content to the
human user, at consistent precision and sub-second latency.

For a sense of the accuracy and realtime responsive-
ness of the prototype, we invite the reader to watch
the following video demonstration of our live system.
http://synrg.csl.illinois.edu/projects/MobileAR

2. MEASUREMENTS AND GUIDELINES
OverLay aims to enable real time augmented reality on to-
day’s smartphone platforms. This section develops basic de-
sign guidelines through measurements and observations.

Location and Orientation Sensors Inadequate
We believe that sensor-only approaches are inadequate to re-
alize OverLay in any generalized settings. Even in outdoor
settings, where GPS locations are precise to around 5m, sen-
sor based approaches fall short. Figure 1 shows measure-
ments performed with Wikitude [9], a popular app on the app
store that uses the phone’s location, compass, and accelerom-
eter to display annotations. The graph plots Wikitude’s error
in line of sights (LoS) measured by computing the perpen-
dicular distance from the true object to the LoS. The median
separation is around 12m, implying that an object has to be at
least 12m wide for the annotation to still be correct. Clearly,
this offers limited applicability.

0 5 10 15 20 25 30 35 40 45 50
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Error (Unit)

C
D

F

Compass Error (Degrees)
GPS Error (Meters)
LOS Error (Meters)

Figure 1: Difference in estimated LoS vs. ground truth
when measured through the Wikitude app.
Indoor environments are far worse. Figure 2 measures com-
pass errors due to ferromagnetic material in the ambience –
as a user walks through a straight corridor, compass angle
deviations are measured against ground truth. The median
deviation is more than 15◦ with a heavy tail of up to 180◦.
Finally, indoor location is still not universally available, and
some that are starting to roll out in a few places are limited
to 5m accuracies, at best. Such accuracies easily derail a aug-
mented reality approach. Thus, to make OverLay robust and
immediately deployable in all environments, we must desen-
sitize the solution to localization and orientation estimates.

0 20 40 60 80 100 120 140 160 180
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Error (Degrees)

C
D

F

Compass Deviation

Figure 2: Distribution of compass deviation in various in-
door environments.

Computer Vision and Cloud Offload Essential
The reality we intend to (digitally) augment is visual. In light
of this, it seems most intuitive to take advantage of the cam-
era, a sensor that “sees” the world similar to humans1. Of
1We assume current generation cameras in smartphones.
While 3D cameras would open further opportunities, we wish
to ensure the widest generalizability across devices today.

course, computer vision algorithms (needed to “perceive” ob-
jects and display annotations) warrant non-trivial computa-
tional support. The way in which this computation is to be
delivered presents a fundamental design decision.

Google’s Project Tango [6] convincingly presents the premise
that tomorrow’s hardware might have computational and
(therefore) visual sensory powers far beyond anything on
the marketplace today: a laptop-grade GPU able to perform
heavyweight computer vision on-device, such as simulta-
neous localization and modeling (SLAM) through bundle
adjustment. While the concept is fascinating, today’s reality
is quite different, and we target a nearer-term solution. It is
also worth noting upfront that as we are without access to
this hardware, we will not be able to compare our techniques
against it.

Excluding such forward-looking hardware prototypes, we es-
tablish our second design guideline. Mobile devices do not
have sufficient computational capability, even with embed-
ded GPUs, to perform suitable computer vision for immer-
sive (and thus compelling) Mobile AR. Contrastingly, today’s
cloud environments afford on-demand provisioning of vast
computational resources, to include dedicated GPUs (espe-
cially, Amazon EC2 and IBM SoftLayer). As evidence of the
performance contrast, Figure 3 shows CDFs of computational
latency in extracting local image features from a 1080p video
frame (using the state-of-the-art SURF heuristic) on a desktop
CPU, GPU, and a current-generation mobile CPU. Mobile CPU
performance is a factor of 1000 – three orders of magnitude
– slower than desktop GPU. Any hope to attain real time AR
today will probably be infeasible without cloud offloading.

0.05 0.2 1 2 5 10 30 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Latency (seconds)

C
D

F

GPU(GeForce Titan Black)
CPU(Intel i7−4930K)
Samsung Galaxy S4

Figure 3: Compute latency: extracting SURF local fea-
tures on GPU vs CPU (single thread) vs mobile CPU (single
thread) for 1 HD-quality video frame.

Network Latency Dictates Lower Bound
The latency gain from cloud offloading is obviously offset by
the network latency in moving images to the cloud. Figure 4
shows a CDF of latency for moving a single HD video frame
from a mobile device, over Wi-Fi, to a local server for process-
ing. Even with a low-latency connection, limited throughput
makes realtime operation untenable. While reduced image
resolution will reduce the data burden (and hasten transmis-
sion times), a commensurate reduction in computer vision ef-
ficacy is an undesirable penalty. In response, OverLay must
be highly selective in which imagery it uploads. Selected por-
tions of selected frames will need to be transmitted to reduce
data transfer by orders of magnitude.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Latency (seconds)

P
ro

p
o

rt
io

n
 o

f
R

e
s

u
lt

s

Round−trip (1920x1080, Grayscale)

Figure 4: Network latency: upload time for a single HD-
quality video frame (1920 x 1080).

Computer Vision: Still Too Slow
Cloud offloading only alleviates the resource crunch. Even
when running on the cloud, the accurate computer vision
techniques are still heavyweight (hence slow and perhaps un-
scalable to many users), while the lighter and quicker ones
are less accurate. The choice of the suitable technique is
a matter of engineering. Figures 5(a) and (b) plot image
matching accuracy and computational latency of a range of
well-established feature extraction and matching techniques.
Unsurprisingly, there is a tradeoff. Our intuition is that accu-
racy must not be overly sacrificed – false positive and nega-
tive pop-ups will simply “break” the user’s sense of immersion.
The latency penalty has to be mitigated some other way, sug-
gesting that computer vision is necessary but insufficient for
delivering the end to end experience.

As a side note, its possible to bring down the latencies
by parallelizing the image matching computation on
many CPU/GPUs in the cloud. However, that would not
scale to real-world many-user deployments. With an eye
towards scalability, we perform our experiments on a single
consumer-grade desktop GPU (resembling a cloudlet [36]),
and support tens of users. The same techniques should hold
with real-world user densities on a real-world cloud.

Opportunities for Geometric Optimization
The computational latency in Figure 5(b) is dominated by im-
age matching, which is in turn a function of the number of
candidates in the image database. Pruning the candidate set
can aid in bringing down the latency to sub-second. To this
end, it may be useful to develop a spatial understanding of
the objects in the physical surrounding. If objects A, B, C, and
D are known to be in spatial proximity, it may be possible to
“prefetch” objects B, C, and D when the user is currently view-
ing object A. If among these four, A and B are known to be in
angular proximity, only B can be prefetched. In the absence
of location information, spatial proximity may be statistically
inferred from the temporal separation observed between var-
ious pairs of objects. Angular proximity can be deduced from
gyroscope rotation as users scan across objects.

By synthesizing sensor data through a geometric optimization
framework, it may be possible to infer a spatio-angular rep-
resentation of objects in a non-absolute coordinate system.
In other words, anchoring any given object at the origin of
such a coordinate system, it may be feasible to understand
how other objects are relatively located. This allows for pre-
diction and prefetching, offering opportunities to attain our
real-time goals. Humans use such multi-sensor anchoring to

0

50

100

A
c
c
u

ra
c
y
 (

%
)

Algorithms

SU
R
F

AKAZE

SIFT
O
R
B

C
orrelogram

C
olor H

ist

FAST/FR
EAK

M
SER

Edge H
ist

BR
ISK

C
olor Layout

1st
2nd
3rd

0.1
0.5

1

2

3

L
a
te

n
c
y
 (

s
e
c
o

n
d

)

Algorithms

SU
R
F

AKAZE

SIFT
O
R
B

C
orrelogram

C
olor H

ist

FAST/FR
EAK

M
SER

Edge H
ist

BR
ISK

C
olor Layout

Extraction
Description
Matching (Against One)

Figure 5: (a) Accuracy/latency of image matching based
on local or global features. Accuracy for 1st, 2nd, or 3rd-
best match plotted from an 100-image database. (b) La-
tency bars reflect stages of the matching process (all num-
bers for server CPU)

.
reason about their movement through environments; Over-
Lay makes an attempt to mimic some of these abilities.

3. SYSTEM OVERVIEW
Desired User Experience
Our ideal end goal is as follows. As a user Alice points her mo-
bile camera at an object in the physical world, an appropriate
annotation pops up immediately atop the corresponding ob-
ject. Alice moves her hand to browse other objects, and tags
keep popping up with non-perceivable lag. If Alice wishes
to annotate a particular object, she simply brings the object in
the center of her viewfinder and enters the annotation (which
could be text, multimedia, or even software code). Bob pass-
ing by that object soon after can look at the same object and
see Alice’s annotation pop-up on his screen. When multiple
annotated objects are in the viewfinder, all the annotations
are overlaid atop the respective object.

We have not been able to achieve this “seamless” goal –
the current system requires a median of 480ms (includes
302ms network latency) to pop-up annotations, along with
more than 95% image matching accuracy. Thus, when using
OverLay, Alice must pause her camera at an object of interest,
and the annotation pops up within a second (except in rare
occasions). Figure 6 presents a screenshot of our prototype
running on an Android smartphone. Even this relaxed goal
was non-trivial.

Main Technical Modules
OverLay’s end to end design firmed up after multiple itera-
tions – in retrospect, we see three logical phases in the devel-
opment process. (1) As an initial target, we focused on lay-
ing the groundwork with computer vision techniques, charac-
terizing the best possible tradeoff between accuracy and la-
tency. This phase included building the complete processing

Figure 6: Live object retrieval using OverLay.

pipeline, evaluating a wide range of vision techniques, under-
standing their assumptions and possible modifications for our
application, and finally reducing latency to the extent pos-
sible, through GPU parallelization, code optimizations, and
sheer engineering. We do not make novel contributions here,
nonetheless, the exercise was “hard” and time consuming to
attain a desired degree of robustness and predictability. (2)
With this framework in place, we heavily leveraged sensing
(especially gyroscope) to reduce the amount of imagery that
would be uploaded from device to server. This alleviated load
on the GPU cutting the response time in half. (3) Finally,
using sensor data from users, we developed an optimization
framework to create the geometric representation of anno-
tated objects. This pruned down the search space, translating
to 4x load reduction in image matching and ultimately trans-
lating to sub-second response latency.

Terminology
Tag or Annotation: Used interchangeably, they refer to con-

tent associated to physical objects. The user may tag or
annotate an object, and these tags/annotations pop up
when a OverLay–enabled camera is pointed at it. Tags
and annotations can be text, multimedia, or a trigger
for more actions (e.g., purchase of an item).

Constant Scan: The ability to continuously browse the phys-
ical environment with the camera, even when the user is
moving. Tags expected to pop up when camera pauses
on an object.

Search Space: Set of candidate objects against which a
given object is being matched. Our search space is a
spatial/angular region surrounding the most recently
matched objects (better explained later).

Micro/Macro Trajectory: Observed or predicted human
path through physical space, exploited to refine the
search space. A macro trajectory is substantial move-
ment with translational and rotational components,
such as walking and taking turns. A micro trajectory is
minor hand movement, likely while standing in a fixed
position – common when entering a room and rotating
the camera to scan objects on the wall.

Learning from
retrievals

Annotation DB

GPU Optimized Pipeline

SURF RefineMatch

(time, orientation)

frame

“Sculpture:
$55”

Select Candidates

Micro-trajectory

Spatial reasoning

Blur?

Hand
Motion?

(frames, sensors)

Annotate

(image, “Sculpture: $55”)

N
E
T
W
O
R
K

SURF

Selected candidates

Macro-trajectory

Linear Program

U
pdate m

odules
Retrieve

Sensory Geometry Visual Geometry

Figure 7: System Overview. Left: client-side. Right: offloaded compute, database on server (cloud).

4. SYSTEM DESIGN
Figure 7 illustrates our simplified system architecture. In
the basic execution flow, an annotated object (bottom left)
is uploaded to the OverLay server, where SURF features
are extracted and systematically indexed in an annotated
(image) database. When objects are retrieved later (top
left), the phone uses vision and sensing data to filter out
unusable frames caused by hand vibration and blur. The
uploaded frames are processed through a GPU optimized
pipeline – the operation includes SURF feature extraction,
matching with selected candidate sets, and refining the
match. If a confident match is found, the server returns the
corresponding “annotation” to the smartphone for on-screen
display.

OverLay underpins this basic execution pipeline with
optimizations that prune the search space during retrieval.
To this end, 3 modules are invoked at different places in the
overall system. (1) Sensor data received during the retrieval
process (i.e., time and gyroscope orientation) is fed into a
“Sensory Geometry” module responsible for inferring the the
spatiotemporal relationships between objects. Two objects
retrieved in a corridor can be “connected” in terms of their
relative time and angular separation. As new retrievals arrive,
and as images get correctly matched (top right), all these
information are fed back into a linear program to ultimately
converge on a geometric representation of annotated objects
in the environment. (2) Such inter-object relationships are
also extracted in the visual domain – if object A and B are
viewed in the same image, OverLay infers relationships such
as “A is on the left of B”. The “Visual Geometry” module uses
data from annotated images to develop this understanding.
(3) Finally, correctly matched images are fed back into the
annotated database to improve/complete the visual models
of an object – this allows for accurate recognition even
when users are viewing objects from different locations,
angles, lighting conditions. The details of these modules are
described next.

4.1 Object Geometry (Sensory and Visual)
When Alice’s camera points at an object, the video frames
are uploaded to the OverLay server, which matches the frame

against annotated images in its database. Matching against
all database objects will be prohibitively slow. For maximized
performance, both in terms of accuracy and speed, it is im-
portant to prune the matching search space to only the likely
candidate objects. GPS location, erroneous to 30m or more in
indoor environments, prunes the candidate set to the order of
a building or a wing in a shopping mall. A real-world deploy-
ment could easily present more than 100 annotations in such
areas – far more pruning is necessary to attain our accuracy
and latency targets.

Towards this goal, we prune across spatial and temporal di-
mensions by learning a spatiotemporal relationship among
annotated objects. At a high level, this results in a graph
of objects where the shape of the graph essentially reflects
how humans observe the (angular and temporal) separation
between objects, as they walk through them. As a simplistic
example, imagine we have three tagged objects A, B, and C
in sequence on along a hallway (Figure 8). Unsurprisingly, if
we observe A then B, it is quite likely we will soon observe
C. Further imagine a fourth object, D, located on the left in
a perpendicular hallway as shown in Figure 8. To make a left
turn, we would expect a rotation ≈ 90◦ counterclockwise. If
instead, a clockwise rotation is observed, the user has likely
turned away, and the possibility of observing D is dramati-
cally reduced. As a result, once OverLay recognizes an object
X, it is able to infer the user’s location in the object graph.
Only objects near X are now candidates for the next recog-
nition task, resulting in substantial pruning. Once the next
object Y is recognized, OverLay knows that the user is now
close to Y and selects objects near Y as the new candidate
set. This operation carries on and the user’s motion path is
tracked through this spatiotemporal object graph. Of course,
the first object recognition must rely on computer vision alone
and crude GPS location.

We limit our understanding of this natural human trajectory
to time and rotation only (note that no form of localization
is necessary). The gyroscope is accurate enough to capture
a high-fidelity awareness of user rotation. Further, we learn
and leverage these trajectories at both macro (long-lived with

tagged object
user
previous path
projected path

left turn

right turn
A
B

C

D

gyroscope

Figure 8: Example macro trajectory. Counterclockwise ro-
tation observed after C is predictive of D.

substantial motion) and micro scales (small movements of the
device in hand). The details follow.

Learning Macro Trajectories
As the server matches images to its object database, it tracks
which objects the user has observed in the recent past (across
minutes of walking motion). When observing object i fol-
lowed by object j, the server records an event k represented
by a net rotation Rk (normalized between 0 ≤ R < 2π) and
by measured time Mk (in arbitrary units). Of course, not all
users will view i and j from the same location, and hence Rk

will vary. Let ER
k denote some unknown “error” by which Rk

will deviate from the mean rotation from i to j (computed
across all users). Similarly, let EM

k denote some unknown
“error” by which Mk will deviate from the mean time taken
between the observations of i and j.

With K observation pairs, we may construct a pair of opti-
mizations for N tags, independently solving for rotation and
time. In addition to the known values Rk,Mk and unknown
values ER

k , E
M
k , we further introduce unknowns for each an-

notation i, Pi and ∀j > i|Tij . Values of Pi may be under-
stood as the “rotation” of annotation i relative to an arbitrary
frame of reference (consistent across all annotations). Thus,
|Pi − Pj | may be understood as the the mean observed rota-
tion between annotations i and j. Tij may be understood as
the mean time to observe annotation j after observing i.

Values of Pi and Tij do not represent absolute properties of
the annotated object. Instead, they reflect where the object
is typically observed, relative to others – how much rotation
is typical from annotation A to B to C, and how much time
typically elapses in between – illustrated in Figure 9.
Tables 1 and 2 provide optimizations for rotation and time. To
ensure computational tractability in dense areas with many
annotations, it was important to formulate each as a linear
program (LP). An earlier attempt using a mixed integer lin-
ear program (MILP) was unsolvable in days of compute time
– these solve in seconds using CPLEX. Given low latency, the
server re-solves both LPs for each new annotation, immedi-
ately as it is added to the database.

These optimizations explicitly track error attributed to each
observation recorded in the annotation database. The solu-
tions to these error terms yield “confidence” estimates for the
solved rotation and time estimates, per annotation. For anno-

A

B

C

|T
AB|

|TBC|

user path

|TAC|

PA

PB

PC

Figure 9: User macro trajectory as it relates to rotational
and temporal optimizations. P values reflect rotation of
the user as she views multiple tagged objects. T values
reflect time elapsed walking.

tation i, median error per observation is computed as:

ER
∗ (i) := ∀j, k : median{ER

k |∃Ri→j
k ∨ ∃Rj→i

k }
EM
∗ (i) := ∀j, k : median{EM

k |∃M i→j
k ∨ ∃M j→i

k }

OverLay combines rotational (P) and temporal (T) values
with these error terms (ER

∗ , E
M
∗) to score which annotations

should be prioritized as the best candidate set for a user.

Learning Micro Trajectories
Macro trajectories reflect the general, typical behavior of users
as they move from annotation to annotation. This is quite use-
ful for users who also move in this typical fashion. For others,
the value degrades. For example, if most users walk down
the center of a hallway, the angles at which various annota-
tions are observed will reflect observation from this typical
trajectory. If a user walks atypically against the wall, the an-
gles she observes will be shifted, and the spatial optimization
will become less correct for her. Equivalently, a user walk-
ing exceptionally quickly will incur faster timings than the
typical walking pace. To accommodate these atypical motion
patterns, OverLay builds a simple model of invariant spatial
relationships that hold true even for the atypical user. Sim-
ply, these relationships characterize if an annotation A is ob-
served, some annotation B may be known to appear to the
left, right, above, or below A. Especially as the user makes mi-
cro (rotational) motions (e.g., scanning around a room look-
ing for annotations), these pairwise spatial relationships en-
able OverLay to shortlist those annotations the user is most
likely to encounter next.

Smartphone cameras have a substantial field of view at their
widest setting (zoom is not used in our prototype). In en-
vironments with dense annotations, often multiple annota-
tions will be in view simultaneously – detected when a cam-
era frame matches to two or more annotations concurrently.
Figure 11 provides pseudocode for inferring micro trajectories
when two annotations appear simultaneously in view. When
a visual match is made we can compute the 2D centroid of the
match in the image. Centroids are compared to infer the gen-
eral direction from one to the other (e.g., right). Figure 10(a)
shows the centroid for B appearing right of A (the circle in
the figure denoting the camera).

Minimize
∑

∀k∈1...K

ER
k

Subject to

∀Ri→j
k |i < j : Pi − Pj ≤ Ri→j

k + ER
k

Pi − Pj > Ri→j
k − ER

k

∀Ri→j
k |j < i : Pi − Pj ≤ −Rj→i

k + ER
k

Pi − Pj > −Rj→i
k − ER

k

∀i ∈ 1 . . . N : 0 ≤ Pi < 2π(N − 1)

∀k ∈ 1 . . .K : 0 ≤ ER
k < 2π

Solving for

∀i ∈ 1 . . . N : Pi

∀k ∈ 1 . . .K : ER
k

With parameters

∀k ∈ 1 . . .K|∃i, j : 0 ≤ Ri→j
k < 2π

Name Parameter / Variable Interpretation

Ri→j
k Observation k; rotation from anno. i to j
Pi Rotational position of a anno. i
ER

k Rotational error for observation k

Table 1: LP, relative angular (rotational) position.

B

C

B

A
C

A
C

A

Figure 10: Micro trajectories for annotations A,B,C on
walls of a room. (a) A ↔ B invariant. (b) A ↔ C condi-
tionally invariant – effectively invariant, so long as the ob-
server remains outside the shaded boundary. (c) B ↔ C
also conditionally invariant.

Under certain conditions, these micro trajectory relationships
will hold invariant, regardless of where in the room A and B
are observed. A ↔ B is spatially invariant when A and B
are coplanar with a room’s wall (e.g., mounted). OverLay as-
sumes A ↔ B could be spatially invariant, if they have been
found simultaneously in view by one or more observers. As-
sume w.l.o.g. A is positioned left of B. At the time of re-
trieval, once A is observed, we may immediately shortlist B
as a potential candidate. If the user rotates right (tracked
by gyroscope), we increase our confidence: B should shortly
appear in view.

Shortlisting is most productive when A,B are truly spatially
invariant, the condition does not have to hold universally to
be useful. Often, a conditional invariance occurs. That is, a
region in which the observer may view A,B such that the
condition holds. In Figure 10, A ↔ B reflects true spatial
invariance. A ↔ C are invariant under the condition that
the observer remains outside the illustrated shaded “barrier.”
Similarly, B ↔ C are also conditionally invariant.

Minimize
∑

∀k∈1...K

EM
k

Subject to

∀M i→j
k |i ≤ j : Tij ≤M i→j

k + EM
k

Tij > M i→j
k − EM

k

∀M i→j
k |i > j : Tji ≤ −M j→i

k + EM
k

Tji > −M j→i
k − EM

k

∀i < j ∈ 1 . . . N : 0 ≤ Tij

∀k ∈ 1 . . .K : 0 ≤ Ek < max{∀k|Mk}
Solving for

∀i < j ∈ 1 . . . N : Tij

∀k ∈ 1 . . .K : EM
k

With parameters

∀k ∈ 1 . . .K|∃i, j : 0 ≤M i→j
k

Name Parameter / Variable Interpretation

M i→j
k Observation k; time from anno. i to j
Tij Time separation between anno. i and j
EM

k Temporal error for observation k

Table 2: LP, relative temporal spacing.

Prioritizing Candidate Tags
At the macro and micro scales, OverLay develops an
understanding of which annotation a user is most likely to
encounter next, given a current observation. OverLay priori-
tizes candidate annotations according to this understanding
before matching against the user’s live camera imagery. The
prioritization is applied as follows.

Consider Figure 12. OverLay considers time then rotation.
First, we construct a spatiotemporal radius MU around the
user, reflecting the set of annotations it would have been pos-
sible for the user to visit since the last match (illustrated as
A) in MU time. For each annotation i, we expand the ra-
dius to MU + EM

∗ (i), to account for the computed tempo-
ral uncertainty. Annotation i is accepted to step two only if
TAi < MU + EM

∗ (i), otherwise it is immediately rejected.
Next, we are able to impose an ordering based on rotation.
Given a user’s rotation RU since tag A, we find orientation
PU := (PA + RU) mod 2π, the user’s current orientation.
We consider the rotational distance from any tag i as |Pi −
PU | mod 2π+ER

∗ (i)/2. We include only half of the error term
to reflect the 50-50 probability that the error should work in
favor or against accepting tag i.

Since micro trajectory is rotation, we may factor it into the
(macro) rotational distance scores. If a micro trajectory rela-
tionship {ABOVE, BELOW, LEFT, RIGHT} is inferred with anno-
tation i and the user’s gyroscope reflects motion in the corre-
sponding direction (i.e., clockwise for right, counterclockwise
for left, up for above, and down for below) from i, we subtract
a value wπ from the rotational score. w is a weight which lets
us (de)emphasize micro trajectory context.

Regionalized Analysis
When the OverLay application is first launched, the user has
no history of recent matches – OverLay has no notion yet of
the user’s macro/micro trajectory. To limit the search space,
OverLay leverages the user’s rough GPS location. The user’s

Input : ti = Descriptors of image i
tj = Descriptors of image j

Output: Spatial relationships ∈ {A, B, L, R,NONE}
matchij = descriptorMatch(ti, tj)
if |matchij | ≥ threshold then
centroidi = computeCentroid(ti ∈ matchij)
centroidj = computeCentroid(tj ∈ matchij)
Wi =Widthi;Hi = Heighti;
/** inferRelation example **/

if centroidi ∈ [(Wi/3, 2Wi/3), (0, Hi/3)] and
centroidj ∈ [(Wj/3, 2Wj/3), (2Hj/3, Hj)] then

relationship is above-below

end if
/** inferRelation example end **/

return inferRelation(centroidi, centroidj)
end if
return none

Figure 11: Pseudocode: micro trajectory inference.

location and the location of every annotation in the database
is discretized using the “Geohash” algorithm. OverLay at-
tempts matches only against annotations in the user’s square
Geohash “cell” or in any of the eight neighboring cells.

4.2 Learning from Retrieval
Initially, an annotated object is only represented by a single
image in the database. Intuitively, the crowdsourced effect
of many users viewing the same annotated object (over time)
might be useful: more views → more visual context → a re-
fined database → higher precision for later users. OverLay
exploits this potential for learning from retrieval.

Learning from retrieval is a periodic four step process, run
as a background server daemon. (1) All past retrievals and
the original annotation images are used to reconstruct a 3D
model of the object and surroundings (a process known as
structure from motion, or specifically, bundle adjustment). The
3D model provides a geometric representation of both the ob-
ject and each camera pose, the 3D position and orientation of
the user during retrieval. (2) Due to false positive matches (≈
5% in our tests), 3D reconstruction [10] can yield erroneous
camera poses. Fortunately, these retrievals are outliers in the
resultant 3D point cloud. We remove these false camera poses
by performing outlier removal based on the point cloud cen-
troid and variance of the model points. (3) All remaining re-
trievals contain the same object, but often contain redundant
visual information. Including all retrieval imagery in the an-
notation database would create bloat and increase matching
latency. Instead, OverLay identifies the most diverse retrievals
(i.e., angles from which the object appears sufficiently differ-
ent). For this, we use KMEANS clustering on 3D camera pose
angles to cluster similar retrieval poses together. (4) We select
one representative view from each of the retrieval clusters to
construct a secondary matching database for each annotation,
to be invoked only when primary matching with the original
fails.

Since learning from retrieval creates a secondary database, it
imposes zero latency for image frames which match the pri-
mary database. When the primary database is insufficient,
the secondary database provides valuable matches. The over-
all experience is thus improved as users who would otherwise

A

BC

MU + Ei

nearby
 tags

MU

D

B

C

A

RU |PC - PU| +EC

|PB - PU| +EB

PU: rotational
distance = 0 increasing

rotational
distance

Temporal
Optimization

Rotational
Optimization

R

R

M

/2

/2

mod 2π

mod 2π

Figure 12: Prioritizing the annotation candidate set. We
compare the user’s last matched tag A with all other
tags. Elapsed time TU defines a radius (containing B),
expanded by error term EM

∗ (i) for each annotation (con-
taining C, D excluded.) B,C, and others in this expanded
radius proceed to step 2 (rest rejected). They are priori-
tized by rotational deviance from the user, including error
terms ER

∗ (i).

see no annotation content are presented with results from the
secondary database, albeit at a slight delay.

4.3 Real-time Cloud Computer Vision
A primary requirement for Mobile AR is that annotations must
quickly appear as the user scans around a room. This section
describes necessary engineering refinements to ensure that
OverLay can surpass a tight usability bound.

Sub-selecting Frame Regions from Gyroscope

Often the user will hold the device reasonably steady while
reading on-screen annotations. Frames generated during this
time are near duplicate of the previous frames and need not
be uploaded. We leverage accelerometer and gyroscope to
cheaply identify such frames. No further processing steps are
invoked; simply the previously-identified annotation remains
on screen.

Even when the user makes nontrivial movements, there is still
often partial overlap between the prior and current frames.
This overlap can be inferred by (1) monitoring accelerometer
and gyroscope to deduce that a user’s movements are primar-
ily rotational (and not from walking); and (2) inferring the
angular difference from gyroscope to see which portions of
the view are new. The gyroscope measures the relative three-
axis angular movement of device from a previous position (a
point in time), and infers the percentage of new content that
should have appeared in the field of view. Specifically, for a
lens projecting a rectilinear image, angle of view may be com-
puted in radians as α = 2arctan(d/2f) where d is the sensor
size and f is the focal length. Assume w.l.o.g. that the gyro-
scope records a clockwise rotation 0 < β < α radians. Only
100β/α% of the screen contains new content, and only that
portion should be shipped to the server for analysis.

Managing Frame Motion Blur
User hand movements from “scanning” the physical environ-
ment result in blurred camera frames (motion blur and active
adjustment from the autofocus system), causing computer vi-
sion underperformance. By applying a Canny edge detector
for blur detection, we score frames to select only those most
likely to contain usable imagery. As Canny is relatively robust
to image resolution, we can apply it at low computational la-
tency to a down-sampled preview image – the first step of the
algorithm is to apply Gaussian blur to remove image speckle,
roughly equivalent to resolution downsampling. By throwing
away useless frames without further processing, we achieve a
higher effective frame rate of useful image data, both improv-
ing accuracy and latency.

Extracting, Matching, and Refining Image Features
Once a crisp frame (or frame region) has been uploaded to
the server and a prioritized candidate set of annotated im-
ages has been identified, we must then match the frame im-
agery to these annotations. Each annotation is represented
in the database as a collection of local image features, com-
puted using the SURF [14] feature extractor and descriptor.
Each feature is represented as a keypoint, an x, y position in
the image at which the feature has been detected and a de-
scriptor vector of 64 floating point values. Two features are
considered similar as an inverse function of the Euclidean dis-
tance (l2-norm) between their respective descriptor vectors.

We find MAB , the minimum distance bipartite matching be-
tween feature vectors for a pair of images IA and IB . Each
descriptor value dAi of IA may be compared with each de-
scriptor value dBj of IB . Let mAB

i be the feature descrip-
tor of IB which has the lowest Euclidean distance from fea-
ture i in IA. Formally, mAB

i := ∀dBj , argmin l2(dAi , d
B
j). Let

MAB := {∀i,mAB
i }, the set of all such best matches from

image IA into image IB .

Although optimal, MAB likely has many false positive, poor
image descriptor matches. We may now refine to M∗AB ⊆
MAB , the subset of high quality matches from IA into image
IB . From common practice, we apply the following tests to
construct M∗AB from MAB:

Distance Ratio Ratio of the Euclidean distance of the best
match value (mAB

i) to the distance of the second best
match value. Typically, threshold ≥ 0.8.

Cross Check Ensures the inverse match IB → IA would re-
sult in the same pairs; mAB

i = j ⇔ mBA
j = i. Thus,

M∗AB =M∗BA.

Homography Runs RANSAC (random sample consensus) to
find an approximate projective transformation from IA
to IB . A match mAB

i is rejected if it is an outlier to this
transformation.

Early testing revealed an excess number of false positive or
negative matches, depending on the thresholds given to ho-
mography. So, we add a final binary test for the entire image.

Slope Variance Imagine IA and IB composited into a sin-
gle image, IA on left and IB on right. For each match
mAB

i = j, we draw a line from IA to IB between the
corresponding feature keypoints. We compute the slope
for each line. If the variance of slope is low, all remain-
ing values mAB

i are accepted. Otherwise we reject all
matches and set M∗AB := ∅.

OverLay performs all computer vision (SURF feature extrac-
tion, feature matching, and feature filtering) on GPU.

Asynchronous GPU Pipeline
To exact the value of mobile-to-cloud computer vision compu-
tational offloading, we must leverage the extreme parallelism
available on a modern GPU. The cost of that GPU is only ac-
ceptable if we can amortize across multiple concurrent users.
However, we found that available implementations of feature
extraction and matching assume a single thread of execution
(i.e., a single CPU core controlling the entire GPU for each
synchronous operation).

When multiple CPU threads attempt concurrent access, con-
flicts arise. While it is possible to use a CPU semaphore to
isolate access to the GPU, this approach leads to intolera-
bly poor GPU utilization. Instead, we heavily modify the
CUDA (NVIDIA architecture GPU programming language) im-
plementations of SURF, feature matching, and feature filter-
ing to utilize CUDA Streams. CUDA Streams provides an asyn-
chronous GPU processing pipeline based on a series of micro
operations (e.g., copying data into or out of the GPU memory,
memory allocation, and kernel execution).

5. EVALUATION
From the onset, we were keen on a real-time evaluation of
OverLay with a live fully-functional prototype in the hands of
unbiased volunteers. However, we did not want to burden
these volunteers with tasks of identifying correct versus in-
correct annotations, or other feedback on ground-truth. This
could slow them down or distract them from the seamless
(environment scanning) experience that OverLay should of-
fer. Thus, for purposes of evaluation, we added instrumenta-
tion to the server side of our system. All uploaded imagery
and sensory data were recorded to disk. Later we were able
to replay the image and sensing data, and exactly observe the
ground truth – what the users saw in each video frame, their
camera pose, their camera motion, the time between view-
ing, etc. We labeled ≈ 10K video frames based on whether
the annotations displayed on screen were correct or not. Note
that in some frames, one or many annotations should appear
(if multiple objects are present). In others, “NO ANNOTATION”
is expected. Importantly, this form of “offline” control allowed
us to improve the system even after the live user studies, and
test the results through accurate data playback and emula-
tion.

5.1 Experiment Methodology
We annotated ≈ 100 objects on the 2nd floor of the coordi-
nated science lab (CSL) – the floor is around 50m long and
10m wide, as shown in Figure 13. Objects are annotated
just once, and selected arbitrarily – they include printers, exit
signs, posters, research prototypes, water fountains, objects
on display, etc. Now, with a completely functional prototype,
we invited volunteers2 to use it live. With limited guidance,
volunteers were free to explore the building, scan whatever
interested them, and they would see the matching annota-
tions live on their phone screen – all without our interfer-
ence. In this way, their walking and scanning with the device
reflects their natural behavior. If they found the experience
unenjoyable, they were free to give up at any point. Thank-
fully, our volunteers were universally curious and excited by
2In compliance with our institutions’ policies for IRB.

the experience, each spending far longer exploring the space
than we asked or anticipated (table below)

Number of tagged objects 100
Volunteers, Men / Woman / Total 6 / 3 / 9

Images captured, Min / Mean / Max 700 / 1188 / 1800
Volunteer time, Min / Mean / Max 12 / 18 / 27 min

ç	

ç	

ç	

ç	 ç	

ç	

Figure 13: 2nd floor CSL: dots denote annotations.

Our volunteers were only asked to use a single version of our
system, CONSERVATIVE. The CONSERVATIVE version includes
our complete solution except for optimizations to prune the
search space of candidate annotations. From the CONSERVA-
TIVE test data, we emulate (offline) results for our ROTATION
and TIME macro trajectory optimizations as well as with mi-
cro Trajectory identification. In all subsequent versions, the
processed client imagery and sensory data are identical (e.g.,
gyroscope-based frame sub-selection is used in all). As CON-
SERVATIVE performs worse in terms of latency, the end user
experience can be assumed to be the lower bound of what
OverLay can achieve.

5.2 Metrics
Across all volunteers, we evaluate accuracy and latency per
frame and per annotation. Each frame uploaded from the
device app to the server is considered in isolation. It may
be blurred or crisp; it may capture an annotated object or
not; it may be captured intentionally (while the user is ac-
tively looking at an object) or incidentally (as the user moves
about the space). Similarly, each annotation has unique per-
formance characteristics – it may be easy or hard to identify;
the search space optimizations may characterize its location
well or poorly. Therefore, each graph presents a CDF (empir-
ical distribution) of accuracy or latency with 100 points, one
for each annotated object, generated from ≈ 10K samples,
one for each frame.

Let Y be the set of all processed frames. Let V ⊂ Y be the set
of frames containing annotated object k. Let P ⊂ Y be the set
of frames identified by our system as having k. Then, V \ P
denotes our system’s false negative predictions, P \V denotes
false positive predictions, and Y \V denotes the set of frames
which do not contain object k. We evaluate OverLay’s predic-
tion efficacy by the following standard metrics of information
retrieval:

Precisionk = |V ∩ P |/|P |
i.e., among all frames that OverLay believes has object
k, what fraction truly has k.

Recallk |V ∩ P |/|V |
i.e., among all frames that truly have object k, what
fraction was identified by OverLay.

Falloutk |(Y \ V) ∩ P |/|Y \ V |
i.e., among all frames that truly do not have object k,
what fraction was believed to have k.

5.3 Comparison with Approximate Matching
Our image-to-database matching process employs brute force
(on GPU) to find the optimal match. As an alternative, a num-
ber of heuristics exist for approximate matching [30]. By
design, these approximate schemes are computationally in-
expensive (i.e., runs faster), at the cost of greater error. To
understand this tradeoff, we compare all proposed schemes
against APPROXIMATE. Briefly, APPROXIMATE matching com-
putes a set of FLANN indices and loads them into CPU mem-
ory – a one-time operation. Later, each incoming image de-
scriptors are matched in real time against these indices (using
schemes like KDTREE, KMEANS). The best matched descrip-
tor is up-voted, ultimately resulting in a best match image. To
be favorable to APPROXIMATE, we pick the top−5 images, and
perform a brute-force search on it – as long as the correct can-
didate is in this set of 5, brute force should output the correct
match. This reflects an optimistic view of APPROXIMATE, and
we will plot its results alongside ours.

5.4 Overall Results: Accuracy and Latency
Figure 14 presents CDFs of overall accuracy as (a) precision,
(b) recall, and (c) fallout. Graphs compare the accuracy of
our CONSERVATIVE scheme against optimizations ROTATION,
TIME, and FULL, as well as APPROXIMATE. Figure 15 presents
a CDF of end-to-end latency (system responsiveness). Each
curve reflects 100% of volunteer data, every frame captured
by the system. None of the volunteers had any prior exposure
to the system nor were given any special knowledge of its
technical approach.

We would expect, and confirm here, that the strongest ac-
curacy performance is achieved by the CONSERVATIVE ver-
sion of our system. Precision is consistently high indicating
that when an annotation is shown, it is almost always accu-
rate. ROTATION, TIME, and FULL reflect optimizations aimed
to improve system responsiveness (not accuracy). ROTATION
is found to be comparatively unreliable in isolation. TIME is
highly accurate, and to our surprise, often outperforms even
the FULL version of the system (which jointly optimizes across
time and rotation, along with micro trajectory context). Upon
deeper inspection of the data (the ≈ 10K camera frames
recording by our volunteers), we find our volunteers were
more consistent in time taken to move between objects than
they were for angular separation. All these schemes consis-
tently outperform APPROXIMATE, implying how latency reduc-
tion indeed incurs a strong penalty in vision-only schemes.

Of course, recall is not impressive, implying that some an-
notations are not captured/displayed in time. We partly ex-
pected this since – if a user’s hand shakes, if lighting is poor, if
the person views the object from a corner, they will all affect
recall. This clearly motivates the need to learn from new re-
trievals made by users over time – Figure 17 will later demon-
strate the efficacy of retrieval.

Latency results also align well with intuition (Figure 15). The
sensor optimizations (ROTATION, TIME, and FULL) heavily
outperform CONSERVATIVE. APPROXIMATE performs slightly
worse than sensor optimizations. Since GPU implementation
of APPROXIMATE is unavailable, we estimate latency numbers
using 3-dimension implementation of KDTREE and scale

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Precision

C
D

F

Approximate
Conservative
Rotation
Time
Full

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Recall

C
D

F

Approximate
Conservative
Rotation
Time
Full

0 0.01 0.02 0.03 0.04 0.05
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Fallout

C
D

F

Approximate
Conservative
Rotation
Time
Full

Figure 14: Main accuracy results: (a) Precision; (b) Recall; and (c) Fallout. Graphs compare accuracy of our CONSERVATIVE
system against enhancements through optimizations, ROTATION, TIME, and FULL.

accordingly for 64-dimension SURF descriptors. For each of
the optimization-based approaches (ROTATION, TIME, and
FULL), our budgeted candidate set size is 10 annotations,
one tenth of the total 100 annotated objects. As shown in
Figure 16, matching is the primary latency component in the
CONSERVATIVE system version, reduced here by 90%. Overall
speedup from the added optimizations is around 4x.

0 0.3 0.6 0.9 1.2 1.5 1.8
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Latency (seconds)

C
D

F

Approximate
Conservative
Rotation
Time
Full

Figure 15: Latency: Optimizations reduce candidate set
from 100 to 10, decreasing median end-to-end latency by
more than a factor of 4, to 180ms.

0 0.2 0.4 0.6 0.8 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Latency (Fraction of overall)

C
D

F

Feature Extraction
BF Matching (N to 5)
Matching Refine (5 to 1)

Figure 16: Computer vision latency by component, CON-
SERVATIVE system version. Optimized versions eliminate
90% of the primary component, matching.

5.5 Learning from Retrievals
OverLay only requires users to annotate objects once, with a
single image. While this places minimal burden on an end
user, diverse perspectives of the object cannot be captured.
Thus, when another user retrieves from a sufficiently differ-
ent location/angle/lighting condition, the object is sometimes
not recognized, diminishing recall (as noted earlier). The is-
sues can get pronounced over time, with minor changes in ob-
ject’s appearance and background. Robust multi-view feature
matching is still an unsolved problem in computer vision [37],
so its mandatory that features of a stored object are updated

periodically. Figure 17 shows the efficacy of such learning
from retrievals. Consistent improvements are evident in both
precision and recall. Some objects were still unrecognized –
delving into the data, we recognized cases of poor network
connection (even transient disconnection), heavily delaying
the frames from reaching the server. Such cases are entirely
out of our control for OverLay.

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Metric

C
D

F

Precision (Conservative)
Precision (Conservative + Learning)
Recall (Conservative)
Recall (Conservative + Learning)
Fallout (Conservative)
Fallout (Conservative + Learning)

Figure 17: Enhanced accuracy results based on learning
from past three retrievals chosen based on diversity in
the camera pose in the 3D reconstruction when compared
against CONSERVATIVE system.

5.6 Micro Benchmarks
We evaluate some details of OverLay’s performance through
micro-benchmarks. Figure 18 shows decrease in responsive-
ness with multiple simultaneous clients on the same server,
under (a) the CONSERVATIVE (most GPU intensive) version of
the system and (b) the optimized FULL version. The CON-
SERVATIVE version cannot support more than three concurrent
clients; FULL supports six at equal user latency.

Figure 19 shows energy consumed (Samsung Galaxy S4
Android). System power measured using Monsoon Solutions
hardware monitor through the battery contacts. Figure 20
shows app UI performance in display frames per second
(FPS). Running the complete system, the app maintains 8
FPS (median) on a Samsung Galaxy S4.
Figure 21 shows the percentage of blurred frames rejected
without upload to the server, per volunteer. Overall, 46% of
frames are rejected without upload, saving substantial upload
bandwidth and server processing.

6. LIMITATIONS AND DISCUSSION
We consider several limitations of the OverLay prototype as
implemented today, and avenues for future enhancement.

0 0.4 0.8 1.2 1.6 2 2.4 2.8
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Latency (seconds)

C
D

F

Single
Two
Three
Four

0 0.4 0.8 1.2 1.6 2 2.4 2.8
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Latency (seconds)

C
D

F

Single
Two
Three
Four
Five
Six

Figure 18: Responsiveness, simultaneous clients, (a) CON-
SERVATIVE and (b) FULL optimized version.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

1

2

3

4

5

6

Time (seconds)

A
v
e
ra

g
e
 P

o
w

e
r

(w
a
tt

)

Display Off
Display On
Preview
Preview+Sense
Preview+Sense+Network

Figure 19: Energy consumption. DISPLAY + PREVIEW
(camera enabled) + SENSE (GPS, gyroscope, accelerome-
ter, and compass) + NETWORK TRANSFER reflects the com-
plete system (average ≈ 4.5 watts).

Exact placement of the annotations on screen
OverLay displays object annotations at a fixed screen location.
An enhanced user interface might display the annotation di-
rectly atop or adjacent to the corresponding object. Our ratio-
nale for this this simplification is twofold: (1) when the an-
notation is authored, the user does not explicitly mark which
part of the image corresponds to the object of interest – mul-
tiple objects might be in view, and (2) during retrieval, the
annotation would need to remain aligned to the object, even
as the user makes fine hand movements.

The “multiple objects” issue may be addressed in varied
ways: (A) requiring the user to draw a rectangle or denote
the intended object; (B) marking candidate objects on screen
and allowing the user to make a simple multiple-choice
selection; or (C) assuming the center of the user’s screen
most likely corresponds to the intended object, and tolerating
errors when this assumption does not hold. The “annotation
alignment” issue can be roughly accommodated by tracking
fine hand movements and shifting the annotations on screen
in the opposite direction. Optical flow and gyroscope based
techniques are both possible for such motion compensation;

2

4

6

8

10

12

14

F
ra

m
e
s
 p

e
r

s
e
c
o

n
d

Preview
Preview+Sense

Preview+Sense+Network

Figure 20: App UI responsiveness, frames/second.

1 2 3 4 5 6 7 8 9
0

20

40

60

F
ra

c
ti

o
n

 o
f

b
lu

rr
e
d

 f
ra

m
e
s

Volunteer

Figure 21: Percentage of frames rejected due to blur.

recent work has even combined the two for enhanced
precision and speed [22].

Searching for annotations
OverLay is most compelling when annotations are dense –
when many objects around are annotated. Value decreases
with sparsity: the user must “hunt” more between annotated
objects. One possibility is to use rough location estimates pas-
sively to alert the user when annotations are nearby, for ex-
ample, through a signature vibration. Once the user opens
the app, on-screen arrows might indicate which direction the
user should rotate until a nearby annotation appears in view.
OverLay is being readied for the Illinois Distributed Museum
project on the UIUC campus [3], and such “on-screen arrows”
will be added in the next release.

Handling appearance changes
OverLay records image data to identify the physical location
of an annotation. However, OverLay must cope with envi-
ronmental dynamism, including changes to the object’s ap-
pearance. One of our users annotated his office desk, and its
appearance changed every day. While we cannot expect to ad-
dress extreme changes, micro-movement of objects or minor
appearance changes could be accommodated through contin-
uous database enhancement, discarding older visual data to
be replaced with that from later retrievals. OverLay does not
apply to objects such as digital displays — whose appearance
changes continuously. Similarly, OverLay does not immedi-
ately apply if a retrieval is made from a significantly different
angle to that of annotation. However, some of these limita-
tions are addressable using techniques discussed in 5.5.

Distinguishing objects in close proximity
OverLay cannot distinguish visually-similar objects in close
proximity. This might be problematic in environments with
repetitive design features, such as different name tags on ad-
jacent doors in a corridor. False positives will undoubtably re-
sult, although our geometric linear optimizations will partly
help (Section 4.1).

7. RELATED WORK
Mobile augmented reality has been studied for more than a
decade. [21, 31] outline a broad vision and discuss various
possible applications. [42] considers the challenges, strate-
gies, and limitations one needs to overcome in building mo-
bile AR systems. [27] and [16] address two important aspects
of Mobile AR – low-power continuous vision and code offload-
ing to cloud. Several works establish sensing-based primi-
tives for Mobile AR: GPS-compass triangulation [17, 19, 32];
camera-pose estimation using Kinect depth sensors [23]; and
gyroscope based camera-pose tracking [44]. Some have lever-
aged physical markers deployed in the environment such as:
QR codes [34], color markers [29], and RFID tags [39]. Oth-
ers have applied 3D camera pose estimation, finding a corre-
spondence between 2D image features and a 3D world coor-
dinate system [25, 40, 45]. [38] is the closest research proto-
type to our work, using SURF feature extraction and location
based pruning to enable mobile AR in outdoor environments.
Our primary advantage beyond this effort is in applicability of
our search space optimizations to indoor environments, with
zero reliance on location information.

While prior art has often considered computer vision and mo-
bile sensing in isolation, there has been some recent suc-
cess in hybridization. Smartphone inertial sensors can be
used to imitate or enhance the computation of various vision
algorithms (e.g., bundle adjustment, optical flow) [24, 28].
[4, 26] fuse vision and sensing to create hyperlapse video
summaries (a form of offline augmented reality). [26] takes
a vision-oriented approach, strongly relaxing any latency re-
quirement. [4] priorities lightweight computation, emphasiz-
ing gyroscope. [43] proposes energy efficient design of a dis-
tributed image search engine. Most of these research are
bottom-up and do not deliver an end-to-end application –
the challenges of very little training, physical indoor space,
and human authoring of content, combined with opportu-
nities of geometric optimizations, makes this paper’s design
constraints unique.

Object recognition (OR) for mobile devices is a overlapping
research effort to Mobile AR, such as Amazon’s Fire phone
or Google Goggles [1, 2, 15]. Visual MIMO [12], communi-
cation between LED screens and a camera, can be used for
Mobile AR but the approach is not generalizable. In contrast
to mobile AR, OR systems: (1) typically operate on a trained
model of multiple images of the same object [1, 2, 18, 20];
(2) are typically invariant to the user’s context; and (3) typi-
cally do not allow dynamic insertions to the content database
as retraining costs are often high. Qualcomm Vuforia [7] is
a commercial Mobile AR SDK for object recognition and 3D
object tracking. Videoguide [8] is a Vuforia app used to an-
imate architecture work in Barcelona museum. Contrary to
Vuforia which requires deployment in advance, OverLay is an
anywhere, anytime system for everyone.

8. CONCLUSION
Mobile AR has been an exciting, yet unrealized, vision. This
paper attempts to complete the vision within the constraints
of today’s smartphones. We combine cloud-offloaded com-
puter vision with an optimization framework on space and
time – capturing typical human behavior and pruning the
computer vision search space. In conjunction with a suite
of engineered systems optimizations, these techniques enable
a practical system for mobile AR. We demonstrate a response

time well within tolerable bounds yet while preserving strong
accuracy. Our approach provides a ready-to-use platform for
enabling a broad spectrum of compelling mobile AR appli-
cations, and is currently deployed in our building and being
readied for a campus wide roll-out.

9. ACKNOWLEDGMENTS
We sincerely thank our many volunteers, Professor Peter
Druschel our shepherd, as well the anonymous reviewers
for their invaluable feedback. We are also grateful to Intel,
Google, and NSF for partially funding this research through
the grant NSF 1430064.

10. REFERENCES
[1] Amazon fire phone. https://developer.amazon.com/

public/solutions/devices/fire-phone.
[2] Google goggles.

https://play.google.com/store/apps/details?id=

com.google.android.apps.unveil&hl=en.
[3] Illinois distributed museum.

http://distributedmuseum.blogspot.com/.
[4] Instagram hyperlapse.

http://hyperlapse.instagram.com/.
[5] Mobile augmented reality, video demonstration. http:

//synrg.csl.illinois.edu/projects/MobileAR/.
[6] Project tango.

https://www.google.com/atap/projecttango/.
[7] Qualcomm vuforia.

https://www.qualcomm.com/products/vuforia.
[8] Videoguide, antoni gaudi modernist museum in

barcelona.
http://www.casabatllo.es/en/visit/videoguide.

[9] Wikitude. http://www.wikitude.com/.
[10] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon,

B. Curless, S. M. Seitz, and R. Szeliski. Building rome
in a day. Communications of the ACM, 54(10):105–112,
2011.

[11] C. Arth and D. Schmalstieg. Challenges of large-scale
augmented reality on smartphones. Graz University of
Technology, Graz, pages 1–4, 2011.

[12] A. Ashok, M. Gruteser, N. Mandayam, J. Silva,
M. Varga, and K. Dana. Challenge: mobile optical
networks through visual mimo. In MobiCom, pages
105–112. ACM, 2010.

[13] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier,
and B. MacIntyre. Recent advances in augmented
reality. Computer Graphics and Applications, IEEE,
21(6):34–47, 2001.

[14] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded
up robust features. In ECCV, pages 404–417. Springer,
2006.

[15] D. M. Chen, S. S. Tsai, R. Vedantham, R. Grzeszczuk,
and B. Girod. Streaming mobile augmented reality on
mobile phones. In ISMAR, pages 181–182. IEEE, 2009.

[16] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. Maui: making
smartphones last longer with code offload. In MobiSys,
pages 49–62. ACM, 2010.

[17] S. Feiner, B. MacIntyre, T. Höllerer, and A. Webster. A
touring machine: Prototyping 3d mobile augmented

reality systems for exploring the urban environment.
Personal Technologies, 1(4):208–217, 1997.

[18] P. Föckler, T. Zeidler, B. Brombach, E. Bruns, and
O. Bimber. Phoneguide: museum guidance supported
by on-device object recognition on mobile phones. In
Proceedings of the 4th international conference on Mobile
and ubiquitous multimedia, pages 3–10. ACM, 2005.

[19] S. Gammeter, A. Gassmann, L. Bossard, T. Quack, and
L. Van Gool. Server-side object recognition and
client-side object tracking for mobile augmented
reality. In CVPR Workshops, pages 1–8. IEEE, 2010.

[20] B. Girod and C. et al. Mobile visual search. Signal
Processing Magazine, IEEE, 28(4):61–76, 2011.

[21] A. Henrysson and M. Ollila. Umar: Ubiquitous mobile
augmented reality. In Proceedings of the 3rd
international conference on Mobile and ubiquitous
multimedia, pages 41–45. ACM, 2004.

[22] M. Hwangbo, J.-S. Kim, and T. Kanade. Inertial-aided
klt feature tracking for a moving camera. In Intelligent
Robots and Systems, 2009. IROS 2009. IEEE/RSJ
International Conference on, pages 1909–1916. IEEE,
2009.

[23] S. Izadi et al. Kinectfusion: real-time 3d reconstruction
and interaction using a moving depth camera. In UIST.
ACM, 2011.

[24] P. Jain, J. Manweiler, A. Acharya, and K. Beaty. Focus:
clustering crowdsourced videos by line-of-sight. In
SenSys, page 8. ACM, 2013.

[25] G. Klein and D. Murray. Parallel tracking and mapping
on a camera phone. In ISMAR, pages 83–86. IEEE,
2009.

[26] J. Kopf, M. F. Cohen, and R. Szeliski. First-person
hyper-lapse videos. TOG, 33(4):78, 2014.

[27] R. LiKamWa, B. Priyantha, M. Philipose, L. Zhong, and
P. Bahl. Energy characterization and optimization of
image sensing toward continuous mobile vision. In
MobiSys, pages 69–82. ACM, 2013.

[28] J. G. Manweiler, P. Jain, and R. Roy Choudhury.
Satellites in our pockets: an object positioning system
using smartphones. In MobiSys, pages 211–224. ACM,
2012.

[29] P. Mistry and P. Maes. Sixthsense: a wearable gestural
interface. In ACM SIGGRAPH ASIA 2009 Sketches,
page 11. ACM, 2009.

[30] M. Muja and D. G. Lowe. Fast approximate nearest
neighbors with automatic algorithm configuration. In
VISAPP (1), pages 331–340, 2009.

[31] H. E. Pence. Smartphones, smart objects, and
augmented reality. The Reference Librarian,
52(1-2):136–145, 2010.

[32] W. Piekarski and B. Thomas. Arquake: the outdoor
augmented reality gaming system. Communications of
the ACM, 45(1):36–38, 2002.

[33] C. Qin, X. Bao, R. Roy Choudhury, and S. Nelakuditi.
Tagsense: a smartphone-based approach to automatic
image tagging. In MobiSys, pages 1–14. ACM, 2011.

[34] J. Rekimoto and Y. Ayatsuka. Cybercode: designing
augmented reality environments with visual tags. In
Proceedings of DARE 2000 on Designing augmented
reality environments, pages 1–10. ACM, 2000.

[35] J. P. Rolland, L. Davis, and Y. Baillot. A survey of
tracking technology for virtual environments.
Fundamentals of wearable computers and augmented
reality, 1:67–112, 2001.

[36] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies.
The case for vm-based cloudlets in mobile computing.
Pervasive Computing, IEEE, 8(4):14–23, 2009.

[37] F. Schaffalitzky and A. Zisserman. Multi-view matching
for unordered image sets, or âĂIJhow do i organize my
holiday snaps?âĂİ. In Computer VisionâĂŤECCV 2002,
pages 414–431. Springer, 2002.

[38] G. Takacs and C. et al. Outdoors augmented reality on
mobile phone using loxel-based visual feature
organization. In Proceedings of the 1st ACM
international conference on Multimedia information
retrieval, pages 427–434. ACM, 2008.

[39] R. Tenmoku, M. Kanbara, and N. Yokoya. A wearable
augmented reality system using positioning
infrastructures and a pedometer. In ISWC, pages
110–110. IEEE Computer Society, 2003.

[40] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and
D. Schmalstieg. Pose tracking from natural features on
mobile phones. In ISMAR, pages 125–134. IEEE
Computer Society, 2008.

[41] D. Wagner and D. Schmalstieg. First steps towards
handheld augmented reality. In ISWC, pages 127–127.
IEEE Computer Society, 2003.

[42] D. Wagner and D. Schmalstieg. Making augmented
reality practical on mobile phones, part 1. Computer
Graphics and Applications, IEEE, 29(3):12–15, 2009.

[43] T. Yan, D. Ganesan, and R. Manmatha. Distributed
image search in camera sensor networks. In SenSys,
pages 155–168. ACM, 2008.

[44] S. You, U. Neumann, and R. Azuma. Hybrid inertial
and vision tracking for augmented reality registration.
In Virtual Reality, 1999. Proceedings., IEEE, pages
260–267. IEEE, 1999.

[45] F. Zhou, H. B.-L. Duh, and M. Billinghurst. Trends in
augmented reality tracking, interaction and display: A
review of ten years of ismar. In ISMAR, pages 193–202.
IEEE Computer Society, 2008.

