
Dejavu: An Accurate Energy-Efficient Outdoor Localization
System

Heba Aly
Dept. of Computer and Systems Engineering

Alexandria University, Egypt
heba.aly@alexu.edu.eg

Moustafa Youssef
Wireless Research Center

Alexandria University and E-JUST, Egypt
moustafa.youssef@ejust.edu.eg

ABSTRACT
We present Dejavu, a system that uses standard cell-phone
sensors to provide accurate and energy-efficient outdoor lo-
calization suitable for car navigation. Our analysis shows
that different road landmarks have a unique signature on
cell-phone sensors; For example, going inside tunnels, mov-
ing over bumps, going up a bridge, and even potholes all
affect the inertial sensors on the phone in a unique pattern.
Dejavu employs a dead-reckoning localization approach and
leverages these road landmarks, among other automatically
discovered abundant virtual landmarks, to reset the accumu-
lated error and achieve accurate localization. To maintain a
low energy profile, Dejavu uses only energy-efficient sensors
or sensors that are already running for other purposes.

We present the design of Dejavu and how it leverages
crowd-sourcing to automatically learn virtual landmarks and
their locations. Our evaluation results from implementation
on different android devices in both city and highway driving
show that Dejavu can localize cell phones to within 8.4 m
median error in city roads and 16.6 m on highways. More-
over, compared to GPS and other state-of-the-art systems,
Dejavu can extend the battery lifetime by 347%, achieving
even better localization results than GPS in the more chal-
lenging in-city driving conditions.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed
Systems; H.3.4 [Information Storage and Retrieval]:
Systems and Software; C.3 [Special-Purpose and Application-
based Systems]: Real-time and embedded systems

General Terms
Algorithms, Design, Measurement, Experimentation, Per-
formance

Keywords
Crowd-sensing, energy-efficient localization, outdoor local-
ization

1. INTRODUCTION
Location-based services (LBS) have become an integral

part of our daily life with applications including car nav-
igation, location-based social networks, and context-aware

.

predication and advertisement. Different LBS require dif-
ferent localization accuracies; Generally, GPS is considered
the de facto standard for ubiquitous and accurate outdoor
navigation. However, GPS is an energy-hungry technology
that can drain the scarce battery resource of mobile devices
quickly. In addition, its accuracy is limited in areas with
obscured access to the satellites, e.g. in tunnels and many
urban areas.

To address the high energy requirement of GPS-based lo-
calization, a number of outdoor localization systems have
been proposed over the years [7,8,23,27]. For example, city-
wide WiFi and cellular-based localization systems depend on
fingerprinting the WiFi and cellular networks through a war-
driving process to remove the need for GPS. Other systems,
e.g. [7, 27], depend on the inertial sensors in today’s smart
phones to obtain the location. through a dead-reckoning ap-
proach and revert to GPS sampling with a low duty cycle
to reset the accumulated localization error. However, this
saving in energy usually comes at a reduced localization ac-
curacy, affecting the range of possible LBS.

In this paper, we present Dejavu as a system capable of
providing both accurate and energy-efficient outdoor lo-
calization. At the core of Dejavu, we use a dead-reckoning
approach based on the low-energy profile inertial sensors (i.e.
the accelerometer, compass, and gyroscope). However, using
the array of sensors available in today’s cell phones, Dejavu
identifies unique points in the environment, i.e. landmarks
or anchors, and uses them to reset the error accumulation in
the dead-reckoning displacement; Bridges, tunnels, curves,
and even potholes all have unique sensor signatures and rep-
resent frequent error-resetting opportunities along the road.
For example, when the car goes over a bump, Dejavu detects
the bump signature on the sensors and resets the car loca-
tion to the bump location. Dejavu constructs a database of
multi-model sensor anchors and leverages it to achieve accu-
rate outdoor car localization. To maintain energy-efficiency,
Dejavu depends on energy-efficient sensors as well as sensors
that are already running for other purposes, e.g. GSM and
opportunistic WiFi signal strength.

To build the anchor database, Dejavu uses a crowd-sourcing
approach, where cell phones contribute their sensor infor-
mation and location estimate. Dejavu analyzes these sensor
readings to detect physical anchors, such as bridges and tun-
nels, as well as virtual anchors (e.g. points with a unique
cellular signal strength signature).

Implementation of Dejavu over android phones shows that
it can provide outdoor car localization with a median accu-
racy of 8.4m inside cities and 16.6m in highways. A phone

ar
X

iv
:1

31
0.

23
42

v1
 [

cs
.C

Y
]

 9
 O

ct
 2

01
3

P
re

-p
ro

c
e
s

s
in

g
 a

n
d

 F
e

a
tu

re
 E

x
tr

a
c
ti

o
n

Anchors

New location

VAN Det

.

WiFi
Clusters

GSM
Clusters
Z-grav.
Clusters

.

.

.

Orient.
Clusters

Anomalies

..
.

..
.

Virtual Anchors

Updated Anchors

User Traces

WiFi Streams

Mag.F. Str.

Acc. Str.

GSM Streams

PAN Det

A D

B

S

C

PAN
Match.

Anomaly

Det.

Feature-

Space

Clustering

Spatial

Clustering

VAN
Match.

Updated Anchors

Figure 1: Dejavu architecture — The phone location is estimated using dead-reckoning, physical (PAN) and virtual (VAN) anchors are
used to reset accumulated error. Sensor traces are also mined to detect new anchors, improving the system accuracy over time.

running Dejavu drains power 347% more efficiently than
GPS. In addition, Dejavu can provide even better accuracy
than GPS inside cities.

In summary, our contributions are summarized as follows:

• We present the architecture of Dejavu: a system that
combines dead-reckoning with sensed road anchors to
provide accurate and energy-efficient outdoor localiza-
tion suitable for car navigation.

• We provide a framework for detecting unique outdoor
landmarks in the environment based on the phone sen-
sors. A unified finite state machine approach is used
to detect bootstrapping physical anchors (e.g. tunnels,
bridges, turns, bumps, etc). In addition, unsupervised
learning techniques are used to further detect virtual
anchors (landmark with unique sensors signatures) and
to automatically and transparently grow the landmark
database in a crowd-sourcing approach.

• We implement our system on android-based phones
and evaluate its performance as compared to the state-
of-the-art systems, in different scenarios.

The rest of the paper is organized as follows: Section 2
presents the system architecture. Section 3 gives the details
of the Dejavu system. We provide the implementation and
evaluation of Dejavu in Section 4. Section 5 discusses related
work. Finally, Section 6 provides concluding remarks.

2. SYSTEM OVERVIEW
Figure 1 shows the system architecture. Dejavu has two

main modules: anchor detection and location fusion. The
system estimates the location of a cell phone that is attached
to the car windshield or dashboard using a dead-reckoning
approach, where the new location is calculated based on the
previous location and displacement (calculated from the ac-
celerometer) along the direction of motion (estimated from
the compass and gyroscope). Due to the noisy inertial sen-
sors, error accumulates with time. To reduce this error accu-
mulation, Dejavu automatically builds and leverages an an-
chor database, based on the collected sensors information, to

reset the error; Whenever the phone detects an anchor sig-
nature, the phone location is adjusted to the anchor location
and error is reset (Figure 2).

2.1 Raw Sensor Information
The system collects raw sensor information from cell phones.

These include inertial sensors1 as well as cellular network in-
formation (associated cell tower ID and its received signal
strength (RSS) plus neighbouring cell towers and associated
RSS). These sensors have the advantage of having a low
cost energy profile and being run all the time during the
phone operation, to maintain cellular connectivity or to de-
tect phone orientation changes. Therefore, using them for
localization consumes zero extra energy. In addition, Dejavu
opportunistically leverages the WiFi chip, if enabled, to col-
lect surrounding WiFi APs. Note that although we focus on
low-energy profile sensors in this paper, extending Dejavu
to use other sensors (such as the mic, camera, temperature,
etc) is straightforward.

2.2 Dead-reckoning and Anchor-based Error
Resetting

Dejavu uses the linear acceleration combined with the
direction of motion θ to compute the phone displacement
based on its previous location. The acceleration signal is
double integrated to obtain the displacement and the com-
pass is used to obtain the direction of motion (θ). To com-
pute the new phone position, we use the Vincenty’s formula,
rather than the Euclidian distance, as it takes the Earth cur-
vature into account [27].

Due to the noise in the accelerometer and compass read-
ings, error accumulates as time goes on. To limit the ac-
cumulated error, Dejavu uses both physical and virtual an-
chors along the road to reset the localization error (Figure 2).
The higher the density of anchors, the more frequent the re-
setting opportunities, and hence the higher the accuracy.

1The inertial sensor data is a vector quantity along the three
dimensions. We use the individual components as well as the
combined magnitude as input data.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120 140 160

L
oc

al
iz

at
io

n
E

rr
or

 (
m

.)

Time Instances (secs.)

Double Integration
2 Anchors/Km
4 Anchors/Km

16 Anchors/Km

Figure 2: Comparing double integration (dead-reckoning) error to
Dejavu with different anchor densities per kilo meter—The trip
length is 1.5 Km.

2.3 Anchors Detection
Our analysis showed that as a car moves along the road

network, there are a large number of road features that can
be identified based on their unique signature on different sen-
sors. For example, Figure 3 shows the change of the phone
orientation angle when the car moves along a curved road.
The figure highlights that unique features (e.g. variance of
orientation angle) can be extracted from the sensor trace to
reflect unique anchors (e.g. transition from a straight to a
curved segment) on the road. These unique anchors can be
used to reset the phone location and hence reduce the error.

Dejavu uses two types of anchors: physical anchors and
virtual anchors. Physical anchors can be mapped to road
features and have uniquely identifiable sensor signatures based
on a certain template. These include bridges, tunnels, turns,
curves, railway crossings, cat’s eyes, speed humps, etc. Those
anchors locations can be extracted from the map or through
prior knowledge. Dejavu uses these physical anchors to seed
its anchor database in a new city and bootstrap the error
resetting process.

On the other hand, virtual anchors are detected automati-
cally using unsupervised machine learning techniques to fur-
ther extend the size of the anchor database, providing more
error resetting opportunities and hence enhancing accuracy.
These virtual anchors have a unique signature in the sensor
signal space and does not necessarily have a physical asso-
ciation with a road feature. Examples include points with
unique GSM or WiFi RSS signature, areas with anomalous
sensor behavior, among others. Those virtual anchors and
their locations are learned through a crowd-sourcing process
in Dejavu.

3. THE DEJAVU SYSTEM
In this section, we provide the details of Dejavu covering

sensors data preprocessing, physical anchor detection, vir-
tual anchor detection, features selection, and anchor loca-
tion estimation. We end the section with a discussion about
different aspects of Dejavu.

3.1 Preprocessing
Anchor detection in Dejavu is based on consistent changes

in the raw signal. To reduce the effect of noise and spurious
changes, e.g. a sudden break or lane change, we apply a
low-pass filter to the raw sensor data. In particular, we use

2

31

2 3

1

 0

 40

 80

 0 5 10 15 20 25 30 35 40

V
ar

. O
ri

en
t.

Time instnces (sec)

2

31

2 3

1

 80

 100

 120

 0 5 10 15 20 25 30 35 40

O
ri

en
t.

(d
eg

)

2

31

2 3

1

Figure 3: A car moving along a curve affects the orientation angle.
The variance of the orientation can be used to detect different
numbered landmarks.

High var. orient. /Start Curve

Low var. orient. & no dir. change /Curve
Low var. orient. & dir. change /Turn

Orient. var. peak
/Mid. Curve

High var. orient.

Y-grav.
decr.

Y-grav.
incr.

No incr. in Y-grav. & long dist. /Bridge End
No decr. In Y-grav. & short dist. /Not Bridge

Y-grav.
incr.

No Y-grav.
incr.

No Y-grav.
decr.

Y-grav
Incr.

Straight

Weak GSM signal & high var.
X-magnetic field & low var.

Y-magnetic field /Start Tunnel

Strong GSM signal || low var. X-magnetic field
|| high var. Y-magnetic field /End Tunnel Weak GSM signal

& high var. X-
magnetic field &

low var. Y-
magnetic field

Y-grav.
incr.

High Z-grav. & Y-grav. var. peak /Bump
Mid. Z-grav. & Y-grav. var. peak over dist. /Railway cross.

X-grav. var. peak & (small Z & Y grav.) /Cat’s eye
No var. in Z-grav.

Y-grav
Incr.

Y-grav
Decr.

Var. Z-grav. incr.
Var. Z-grav.

incr.Smooth

No
Tunnel

No
Bridge

Curved

Tunnel

Var.
Z-grav
Incr.

Figure 4: A Mealy finite state machine for detecting different
classes of physical anchors. The anchors are identified as output
of the machine (highlighted in bold and underlined).

local weighted regression to smooth the data [6].

3.2 Physical Anchors
Physical anchors are used to seed the anchor database.

These are anchors that can be identified from the map and/or
prior knowledge of their locations. We could identify dif-
ferent classes of physical anchors that have a unique signa-
ture on the multi-modal raw sensor vector including bridges,
tunnels, turns, curves, railway crossing, cat’s eyes, speed
humps, among others. Note that fine-grained differentiation
between different classes, e.g. separating curves from turns,
is important as it reduces the confusion between adjacent
anchors. Figure 4 gives a Mealy finite state machine that
can be used to detect the different classes. In the balance of
this section, we give details about identifying the different
classes. Note that different sensors can be used to identify
the same landmark, which is useful for increasing the detec-
tion accuracy.

3.2.1 Curves and turns
Road curvature, including curves and sharp turns, forces

 10

 20

 0 5 10 15 20 25 30

R
SS

I
(a

su
)

Tunnel Start Tunnel End

 0
 20
 40
 60

 0 5 10 15 20 25 30

V
ar

 Y
-m

f.
Tunnel Start Tunnel End

 0
 20
 40
 60

 0 5 10 15 20 25 30V
ar

 X
-m

f.

Time Instances (sec.)

Tunnel Start Tunnel End

Figure 5: Example of the different sensors behavior that charac-
terize a tunnel: reduction in the cellular RSS, high variance of
the ambient magnetic field in the x-direction, and low variance of
the ambient magnetic field in the y-direction.

the car to change its direction, which results in a big variance
in the phone’s orientation (Figure 3). This can be captured
using the orientation angle. To further differentiate between
curves and turns we note that turns has a large difference
between their start and end orientation angles. The associ-
ated anchors are detected at the beginning and end of the
curve (when the variance goes above or below a threshold),
at the point corresponding to the peak of variance, or at the
location of the turn (angle change is above a threshold).

3.2.2 Tunnels
Going inside tunnels causes a drop in the cellular sig-

nals (for the associated and neighboring cells). We also no-
ticed a large variance in the ambient magnetic field in the
x-direction (perpendicular to the car direction of motion)
while the car is inside the tunnel. This can be explained
by the metal that exists on the side of the tunnel structure.
Note that other classes of anchors may lead to a large vari-
ance in the magnetic field x-direction. However, we found
that tunnels are unique in having a large drop in the cellular
RSS, high variance in the x-axis magnetic field, and low vari-
ance in the y-axis (direction of car motion) magnetic field
as shown in Figure 5. The associated anchors are detected
at both the beginning and end of the tunnel.

3.2.3 Bridges
Bridges cause the car to go up at the start of the bridge

and then go down at the end of the bridge. This is reflected
on the y-gravity or z-gravity acceleration. Although other
classes, such as bumps, cause the same effect (y or z gravity
acceleration going up then down), bridges are unique in hav-
ing this effect over a longer distance. The associated anchor
is detected at the end of the bridge. Note that the bridge
stretch marks are detected as another class of anchor.

3.2.4 Road anomalies
Just like bridges, bumps, speed humps, cat’s eyes, bridge

stretch marks, and railway crossings all cause the car to
move up then down, affecting all gravity acceleration axes.
However, unlike bridges, all these classes affect the gravity
acceleration over a small distance. To further separate these
classes, we employ other sensors as follows (Figure 6):

Cat’s eyes: Unlike other road anomalies, the cat’s eyes

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

1 2 3 4 5 6 7 8 0

V
ar

. X
-g

ra
vi

ty
 a

cc
.

Time instance (secs.)

Bumps
Bridge Stretch Marks

Railway Crossing
Smooth Road

Cat’s eyes

(a) X variance.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1 2 3 4 5 6 7 8 0

V
ar

. Y
-g

ra
vi

ty
 a

cc
.

Time instance (secs.)

Bumps
Bridge Stretch Marks

Railway Crossing
Smooth Road

Cat’s eyes

(b) Y variance

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

1 2 3 4 5 6 7 8 0

V
ar

. Z
-g

ra
vi

ty
 a

cc
.

Time instance (secs.)

Bumps
Bridge Stretch Marks

Railway Crossing
Smooth Road

Cat’s eyes

(c) Z variance

Figure 6: Effect of different road conditions on the X, Y, and Z
gravity acceleration variance. Cat’s eyes have the lowest Y and Z
variance, stretch marks are only detected inside a bridge, bumps
have the highest Y and Z variances, while the railway crossing
has a medium Y and Z variance.

structure does not cause the car moving above them to have
high variance in the y or z-axis gravity acceleration.

Speed humps: usually have the highest variance in the
y-axis and z-axis gravity acceleration compared to the other
classes.

Bridge stretch marks: These are only detected if the
system detects that the car is on a bridge.

Railway crossings: leads to a medium variance in the
y-axis and z-axis gravity acceleration over a longer distance
compared to other road anomalies.

3.3 Virtual Anchors
To further enhance accuracy and exploit other error op-

portunities, Dejavu uses unsupervised learning techniques
to identify virtual anchors that have distinct signature on
cell-phone sensor readings along the road. These include
points with unique GSM or WiFi RSS signature as well as
anomalies in other sensors signatures.

Figure 1 summarizes our virtual anchor detection tech-
nique. First, anomaly detection techniques are used to iden-
tify anomalies in one or more sensors readings. Those anoma-
lies are then clustered in the sensor space to identify candi-
date clusters of virtual anchors. Finally, the points of each
cluster are then spatially clustered to identify the location
of each anchor. An anchor is recognized if the cluster size is
above a threshold and does not overlap with other instances
of the same class within its surrounding area. In the balance
of this section, we start by discussing the selected features
and then give the details of each submodule.

3.3.1 Features selection
We have two main classes of sensors: vector-valued (e.g.

WiFi and cellular) and scalar-valued sensors (e.g. x-gravity).

Vector-based sensors:

Cellular towers information can be used as anchors. In
particular, the GSM cellular specifications give the tower
ID and the corresponding RSS for the cell tower the phone
is associated with and up to six neighboring cells. This infor-
mation is available through APIs in modern cell phones and
presents an energy-free opportunity for obtaining ubiquitous
virtual anchors.

Similarly, when the WiFi interface is enabled, users mov-
ing along the road hear WiFi access points (APs) from nearby
buildings. Each WiFi sample corresponds to the list of APs
MAC addresses and their corresponding RSS values.

Cellular and WiFi anchors correspond to points in the RSS
signal space with unique signature. To compute the distance
between two samples in the cellular or WiFi feature space,
we experimented with different fingerprinting techniques [3,
25]. We ended up using the following metric due to its low
overhead and robustness to changes in the number of APs:

1

|A|
∑
∀a∈A

min(f1(a), f2(a))

max(f1(a), f2(a))
(1)

Where A represents the union of the set of APs heard in
the two samples; fi(a) represents the RSS heard from AP a
in sample i (fi(a) = 0, if a is not heard in sample i). The
similarity value of this metric is between 0 and 1.

The rationale for this equation is to add proportionally
larger weights to the metric when an AP is heard at both
locations with similar RSS. The normalization by the num-
ber of APs is used to make the metric more robust to changes
in the number of APs between different locations.

Scalar-valued sensors:

Each sample of these sensor streams can be represented
by a single value, e.g. the gravity acceleration components.
Note that even though some sensors are vector quantities,
e.g. the gravity has three components along the x, y, and
z directions, we treat each of them individually to detect a
richer set of anchors.

For a stream of a particular sensor readings, we extract
features from a sliding window of size w, where features in-
clude the mean, maximum, variance, skewness, etc of the
readings within the sliding window. More formally, denote

the readings inside the sliding window starting at time t as
S = (st, st+1, ..., st+w−1), then each feature can be repre-
sented as v = g(S), where g is a function that maps the
samples inside the window to a single feature value, e.g. the
mean.

3.3.2 Anomaly detection
An anchor is defined as a unique point in its surrounding.

To enhance the efficiency of anchor detection, we employ
an anomaly detection technique on each of the scalar-valued
sensors readings. In particular, we estimated the distribu-
tion (f̂(v)) of the obtained feature sequence (vi) as [4, 22]:

f̂(v) =
1

nh

n∑
i=1

K(
v − vi
h

) (2)

where h is the bandwidth, n is the a sample size, and K is
the kernel function. The choice of the kernel function is not
significant for the results of the approximation [21]. There-
fore, we choose the Epanechnikov kernel as it is bounded
and efficient to integrate:

K(q) =

{
3
4
(1− q2), if |q| ≤ 1

0, otherwise
(3)

We also used Scott’s rule to estimate the optimal band-
width [21]:

h∗ = 2.345σ̂n−0.2 (4)

where σ̂ is the standard deviation of the feature stream.
After estimating the density function, we select critical

bounds so that if the feature values observed exceed those
bounds, the observed values are considered anomalous. The
critical bounds depend on the type of the feature selected;
Given a significance parameter α and assuming F̂j is the
CDF of distribution shown in Equation 2, if the feature is
a measure of central tendency (e.g. the mean), which can
deviate to the left or the right, then lower and upper bounds

will be calculated such that the lower bound is F̂j
−1

(α/2)

and the upper bound is F̂j
−1

(1 − α/2) . However, if the
feature is a measure of dispersion (e.g. the variance), which
can only deviate in the positive (or right) direction, then an

upper bound is only needed and is equal to F̂j
−1

(1−α). We
set α = 0.4 in our experiment as it balances the number of
detected anomalies.

3.3.3 Two stage clustering
We cluster the features using hierarchical clustering in the

vector feature space. This clustering stage will group similar
anomalies, e.g. all potholes, into one cluster.

To identify the individual anchor instances within the
same cluster, we apply a second stage of clustering; For a
given cluster generated from stage one, we apply spatial
clustering to the points inside it based on the points coordi-
nates.

To reduce outliers in both stages, a cluster is accepted
only if the number of points inside it is above a threshold.
In addition, a second stage spatial cluster is declared as an
anchor if its points are confined to a small area and does
not overlap with other clusters from the same anchor. The
anchor location is taken as the weighted mean of the points
inside the cluster.

Known anchor

Est. anchor loc.
Avg. loc.
Actual anchor

loc.

Figure 7: Different car traces passing by the same anchor and the
corresponding estimated anchor location. The starting point of
each trace is the point of the last error resetting event. Shorter
traces have higher accuracy.

3.4 Computing the Anchor Location
Whenever an anchor is detected, whether physical or vir-

tual, its location is estimated as the current estimated phone
location. However, since the user location has inherent error
in it, this error is propagated to the anchor location.

To solve this issue and obtain an accurate anchor loca-
tion, we leverage the central limit theorem. In particular,
different cars will generally visit the same anchor through
different independent paths. Therefore, averaging the re-
ported locations for the same anchor from the different cars
should converge to the actual anchor location.

Moreover, we note that the longer the user trace before
hitting an anchor from the last resetting point, the higher
the error in the trace (Figure 7). Therefore, we use weighted
averaging to estimate the anchor position, given a higher
weight to shorter traces.

3.5 Discussion
Dejavu provides accurate and energy-efficient outdoor lo-

calization suitable for car navigation. In this section, we
discuss different aspects of the system.

3.5.1 Anchors aliasing
Sometimes, different classes of anchors can be confused

with other anchors at some samples. For example, a bump
can be mistakenly detected as a railway crossing. To reduce
this ambiguity, Dejavu leverages the map context informa-
tion. In particular, using the current estimated user loca-
tion, one can filter out some anchor classes that do not exist
in the map within a certain area around the user location, re-
ducing ambiguity. We also note that some physical anchors
can be detected as virtual anchors using the anomaly detec-
tion and the unsupervised learning engine. Dejavu gives a
higher priority to virtual anchors, which helps further reduce
the ambiguity in the physical anchors detection, if any.

3.5.2 Efficient matching
Similarly, we can leverage the user location, though not

completely accurate, for efficient anchor matching. Particu-
larly, Dejavu limits its search space to a small area around
the estimated user location. This significantly reduces the
search space and increases the scalability of the system.

3.5.3 Processing location
Dejavu can be split into a client-server architecture, where

the sensors data is collected from the mobile and sent to
the cloud for processing. Another model is to cache part

of the anchors database on the client, based on the current
estimated location, and perform the matching locally on the
client. Both techniques have their pros and cons in terms
of required resources, latency, and communication cost and
the optimal choice depends on the system designer’s goals.

3.5.4 Other sensors
In this paper, we focused on the inertial sensors, cellular,

and opportunistic WiFi due to their energy consumption
advantage. Other sensors on the phone, such as the mic
and camera, can be leveraged to further increase the density
of anchors and hence accuracy. However, careful planning
should be employed to study the energy-accuracy tradeoff.
Sampling these sensors at a low duty cycle can be leveraged
to reduce the energy consumption.

3.5.5 Handling heterogeneity
Different phones can have different sensor readings for the

same anchor, especially in the range of readings. To ad-
dress this, Dejavu implicitly applies a number of techniques
including: anomaly detection based on the feature distribu-
tion, using scale-independent features (such as the variance),
and combining a number of features for detecting the same
anchor.

4. EVALUATION
We implemented Dejavu on different android devices in-

cluding HTC Nexus One, Samsung Galaxy Note, Samsung
Galaxy Nexus, and Samsung Galaxy S Plus. We evaluated
the system in the city of Alexandria, Egypt as well as a num-
ber of major highways, covering a combined road length of
89.5 km. Table 1 summarizes the testbeds parameters. Due
to the low accuracy of the internal GPS for most of the used
cell phones inside cities (as quantified in Section 4.2.1), we
used an external bluetooth satellite navigation system that
uses both the GPS and GLONASS systems as a ground
truth.

For the rest of this section, we start by evaluating the ac-
curacy of different system modules then compare the perfor-
mance of Dejavu in terms of accuracy and energy-consumption
to the GPS and GAC [27] systems.

4.1 Performance of the Different System Mod-
ules

4.1.1 Physical anchor detection accuracy
Table 2 shows the confusion matrix for detecting different

physical anchors. The table shows that different anchors
have small false positive and negative rates due to their
unique signatures; The overall detection accuracy is 94.3%.

4.1.2 Virtual anchor detection accuracy
Figures 8 shows the effect of changing the similarity thresh-

old (Section 3.3.1) on the vector-based anchor density as well
as the ability to differentiate between adjacent anchors. This
threshold is used in the first clustering stage to determine if
two samples belong to the same cluster or not. Using a high
value for the threshold leads to discovering more anchors.
The figure also shows that, due to the better signal prop-
agation in highways, more distance is required to separate
the anchors at the same similarity threshold.

Comparing WiFi anchors to cellular anchors, WiFi an-
chors are more dense in cities due to their smaller coverage

Testbed

Average Anchor Density (per km)
Distance Speed (km/h) Phy. Virt. vect. sens. Virt. scalar sensors

covered (km) Avg. Max. anch. GSM WiFi Acc. Magnet. Orient.

City 39.5 12.6 55.8 3.3 50 112.2 10 7 9
Highway 50 51.1 100.1 1 33.3 7 2.9 1.7 1.4

Table 1: Summary of the different testbeds used. The high density of anchors, even without WiFi, allows Dejavu to obtain high-accuracy
energy-efficient localization in both testbeds.

Cat’s eyes Bumps Curves Rail cross. Bridges Tunnels Turns unclass. FP FN Total traces

Cat’s eyes 22 0 0 0 0 0 0 5 0 0.18 27
Bumps 0 30 0 3 0 0 0 0 0.03 0.09 33
Curves 0 0 20 0 0 0 0 0 0 0 20

Rail cross. 0 1 0 13 0 0 0 0 0.21 0.07 14
Bridges 0 0 0 0 9 0 0 1 0 0.1 10
Tunnels 0 0 0 0 0 10 0 0 0 0 10
Turns 0 0 0 0 0 0 40 0 0 0 40

Overall 0.03 0.06 154

Table 2: Confusion matrix for classifying different physical anchors.

 0

 50

 100

 150

 200

 0.2 0.4 0.6 0.8
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r

of
 W

iF
i A

nc
ho

rs
/K

m
.

L
oc

al
iz

at
io

n
A

cc
ur

ac
y

Dissimilarity

Number of Anchors/km
Loclaization Accuracy

(a) WiFi-City

 0

 4

 8

 12

 0.2 0.4 0.6 0.8
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r

of
 W

iF
i A

nc
ho

rs
/K

m
.

L
oc

al
iz

at
io

n
A

cc
ur

ac
y

Dissimilarity

Number of Anchors/km
Loclaization Accuracy

(b) WiFi-Highway

 0

 20

 40

 60

 80

 100

 0.2 0.3 0.4 0.5 0.6
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r

of
 G

SM
 A

nc
ho

rs
/K

m
.

L
oc

al
iz

at
io

n
A

cc
ur

ac
y

Dissimilarity

Number of Anchors/km
Loclaization Accuracy

(c) Cellular-City

 0

 10

 20

 30

 40

 50

 60

 0.2 0.3 0.4 0.5 0.6
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r

of
 G

SM
 A

nc
ho

rs
/K

m
.

L
oc

al
iz

at
io

n
A

cc
ur

ac
y

Dissimilarity

Number of Anchors/km
Loclaization Accuracy

(d) Cellular-Highway

Figure 8: Effect of changing similarity threshold on anchor density
and correctly identifying the anchor

range and availability. However, since it is less probable to
find WiFi APs on the highway, GSM anchors are more dense
in this case.

We set the similarity threshold to (0.4, 0.4) for WiFi and
(0.25, 0.3) for GSM for the (in-city, highway) cases. These
values provide a good number of vector-based anchors while
maintaining good differentiation accuracy.

4.1.3 Anchor localization accuracy
Figure 9 shows that the error in the anchor location drops

quickly as we increase the number of samples. We can con-
sistently reach an accuracy of less than 5m using as few as
20 samples for all discovered anchors.

4.1.4 Effect of anchor density on accuracy
Figure 10 shows the density of anchors in our testbeds.

The figure highlights that there are indeed a large number
of opportunities for error resetting, allowing Dejavu to ob-
tain accurate and energy-efficient localization. In addition,

-20

-15

-10

-5

 0

 5

 10

 15

 0 5 10 15 20 25 30 35 40

L
oc

al
iz

at
io

n
er

ro
r

(m
)

Number of samples

Sample
Average

Figure 9: Effect of number of samples on the accuracy of estimat-
ing the anchor location.

virtual anchors are much more dense than physical boot-
strap anchors, highlighting their advantage.

Since we use WiFi opportunistically2 and the number of
anchors detected from the sensors varies from one road to
another depending on its characteristics, we evaluate the ef-
fect of changing the anchor density on accuracy to generalize
the obtained results to other areas. For this, we uniformly
sample the detected anchors to obtain a specific density.
Figure 11 shows the effect of anchor density on the system
localization accuracy. We can see that even with a low den-
sity of anchors, as low as 28/km, the accuracy is still high
(23m in city and 20m in highway).

4.2 Comparison with Other Systems
In this section, we compare the performance of Dejavu

in terms of accuracy and energy consumption to GPS and
GAC [27]. Similar to Dejavu, GAC uses dead-reckoning to
estimate the phone location. However, to reset the accumu-
lation of error, GAC synchronizes with the GPS with a low
duty cycle. Table 3 summarizes the results.

2We evaluate Dejavu performance without WiFi anchors in
Section 4.2.1.

 1

 10

 100

 1000

Highway Urban

A
nc

ho
rs

/K
m

PAN
WiFi VAN

GSM VAN
Acc. VAN

Magnet. VAN
Orient. VAN

Figure 10: Physical (PAN) and virtual (VAN) anchors density for
the different classes in our testbeds.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

C
D

F

Localiazation Error (m)

192 Anch/km
96 Anch/km
48 Anch/km
32 Anch/km

(a) City

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100 120

C
D

F

Localiazation Error (m)

47 Anch/km
24 Anch/km
16 Anch/km
12 Anch/km

(b) Highway

Figure 11: Effect of density of anchors on the localization accu-
racy.

4.2.1 Localization Error
Figure 12 shows the CDF of localization error for the three

systems. The GPS accuracies are reported by the android
API. The figure shows that Dejavu gives better accuracy
than GPS within cities, even without the WiFi anchors, due
to the urban canyon problem and going inside tunnels or
under bridges that affect the GPS accuracy. Dejavu main-
tains its accuracy in highway driving, though its accuracy is
slightly less than GPS. GPS, however, has the best worst-
case error, as in rare cases, i.e. at the tail of the distribution,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

C
D

F

Localiazation Error (m)

Dejavu
Dejavu-No WiFi

GPS
GAC (10 sec)
GAC (60 sec)

(a) City

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

C
D

F

Localiazation Error (m)

Dejavu
Dejavu-No WiFi

GPS
GAC (10 sec)
GAC (60 sec)

(b) Highway

Figure 12: CDF of localization error of Dejavu compared to GPS
and GAC [27].

 0

 50

 100

 150

 200

 250

 300

GPS GAC
(5 Sec)

GAC
(60 Sec)

Dejavu Dejavu
(NoWiFi)

Po
w

er
 (

m
W

)

Figure 13: Power consumption for the different systems.

discovering anchors may be delayed, leading to accumulation
of the error from dead-reckoning.

GAC [27] accuracy, on the other hand, depends on the
duty cycle; ranging from good accuracy (synchronization
rate of once per 10 seconds) to hundreds of meters (syn-
chronization rate of once every 60 seconds). This has a huge
impact on the energy consumption though, as quantified in
the next section. Note also that when GPS performs poorly,
e.g. inside cities, GAC accuracy is also affected.

4.2.2 Power consumption
Figure 13 shows the power consumption for the different

systems calculated using the PowerTutor profiler [28] and
the android APIs using the HTC Nexus One cell phone.
The figure shows that Dejavu has a significant advantage in
power consumption, with 347% saving in power compared
to the GPS. The no-WiFi mode can further double this ad-
vantage.

5. RELATED WORK
Dejavu combines dead-reckoning and sensor-based anchor

detection to provide accurate and energy-efficient localiza-
tion. Through this section, we discuss different techniques
for outdoor localization and sensing. The Global Position
System (GPS) [12] gives an accurate location information
in outdoor environments. However, it suffers from large
power consumption and low accuracy when satellite signals
are weak, e.g. due to tall buildings surrounding the road (ur-
ban canyons), inside tunnels, and bad weather conditions [9].
Even with sufficient satellites in view, the geometric dilution
of precision can often be large with the estimated location
points scattered around the original location [20], especially
for the low-cost GPS chips typically available in cell-phones.

Alternative localization techniques have been introduced
to address the GPS issues including city-wide GSM and
WiFi localization that trade energy-efficiency with less accu-
rate localization. Typically these systems are cell-ID based [11]
or use the RSS information [5, 8, 13–16, 23, 26] as it is avail-
able for the application developers, compared to e.g. angle-
of-arrival based systems. Due to the complex signal prop-
agation effects, RSS-based techniques require the construc-
tion of a fingerprint map with RSS signatures for locations
inside the area of interest. This calibration step is an ex-
pensive overhead, especially for covering large areas. Also,
these systems suffer from low accuracy.

Recently, inertial sensors have become main-stream in cell-
phones. Researchers have leveraged these low-energy sensors
to achieve energy-efficient localization [2,7,24,27]. The main
idea is to use a dead-reckoning approach for localization and
to reset its accumulating error. For example, by running the
GPS sensor at a low-duty cycle. These systems still suffer
from bad accuracy when the GPS signal is not available or
when the GPS synchronization is more than 50 seconds, with
errors as large as 100 meters inside cities and 250 meters in
highway. Dejavu eliminates the need of the energy-hungry
GPS and leverages the array of independent sensors avail-
able on the phone for error resetting, achieving accuracies
better than the GPS in some cases.

Map matching is a technique that has been used for error
resetting in both research [7,19] and commercial navigation
products. It works by matching a GPS trace to the road
network. However, this does not reset the displacement er-
ror unless there is a significant change in the trace, e.g. a
turn. So if the car is moving in a straight line, the error
will accumulate quickly with time. Dejavu extends the map
matching concept to matching with both physical and vir-
tual anchors, which as we show in this paper are amble in
both cities and highways, to achieve remarkable accuracy,
even if the user is not changing direction and without using
the GPS.

CrowdInside [1] is a system for the automatic estimation
of indoor floorplans. Part of the CrowdInside system is the

generation of accurate indoor traces using error resetting
with indoor anchors such as stairs and elevators. Dejavu
uses a similar approach for outdoor environments. How-
ever, outdoor anchors are completely different from indoor
ones. In addition, we believe that the outdoor localization
is a harder problem as the step pattern in the users’ move-
ment in indoor environments leads to less error accumulation
compared to the outdoor car tracking. To compensate for
this higher challenges, we introduce the virtual anchor con-
cept to enrich the anchor database, allowing for higher error
resetting opportunities.

Identifying road characteristics via different mobile sen-
sors and monitoring road condition has been addressed in
literature [10, 17, 18]. These systems use the inertial sen-
sors to monitor different road problems and use GPS to
localize the sensed road problems. For example, the Pot-
hole Patrol system [10] uses a 3-axis accelerometer and GPS
to detect potholes along the road and separate them from
manholes and expansion joints. Similarly, Nericell [18] tar-
gets detecting road and traffic conditions using the phone
sensors. They detect potholes using the same sensors. They
did not differentiate between speed bumps and potholes as
they assume that the location of intended speed bumps is
known. Both Nericell and Pothole Patrol use external sensor
chips which have higher sampling rates and lower noise com-
pared to chips on typical cell-phones in the market. In [17]
authors presented an android based pothole detector which
could identify different sizes of potholes. Dejavu, in compari-
son, uses a larger set of sensors available on typical phones to
detect different classes of anchors including tunnels, bridges,
cat’s eyes, among road anomalies. This is performed using
a crowd-sourcing approach in a transparent way to the user.
In addition, it employs an unsupervised learning approach
in order to detect virtual anchors. Dejavu also uses standard
sensors on typical phone with a low sampling rate for better
energy-efficiency.

6. CONCLUSION
We presented Dejavu, a system for accurate energy-efficient

outdoor localization suitable for car navigation. Dejavu com-
bines dead-reckoning with a novel anchor-based resetting
technique to obtain accuracies that surpass GPS in city driv-
ing. To achieve energy efficiency, Dejavu depends on low-
energy sensors and sensors that are already running for other
purposes. We showed how Dejavu can extract and use both
physical anchors from the map and virtual anchors using a
crowd-sourcing based approach.

Implementation of Dejavu on a number of android devices
show that Dejavu can achieve outdoor car localization with
a median accuracy of 8.4m in city roads and 16.6m in high-
ways. This is 42.9% better in median localization error than
GPS in city driving conditions, which is the most challeng-
ing case. In addition, Dejavu consumes 347% less power
than GPS.

Currently, we are extending the system in multiple direc-
tions including outdoor pedestrian localization, extracting
new anchor classes, using more phone sensors, among oth-
ers.

7. REFERENCES
[1] M. Alzantot and M. Youssef. CrowdInside: automatic

construction of indoor floorplans. In SIGSPATIAL,
pages 99–108. ACM, 2012.

Technique
Localization Error

Power Cons.∗City Highway
Median 75% Max. Median 75% Max.

Dejavu 8.4 m 13.8 m 408.2 m 16.6 m 24.2 m 41.5 m 59.9 mW
Dejavu 15.8 m 48.5 m 426.3 m 18.2 m 26.5 m 41.9 m 25.9 mW

(No WiFi) (-88.1%) (-251.4%) (-4.4%) (-9.6%) (-9.5%) (-0.96%) (+56.8%)

GAC 41.7 m 100.3 m 538.3 m 26.1 m 57.3 m 145.2 m 109.7 mW
(10 sec) (-390.6%) (-642.9%) (-31.8%) (-69.5%) (-142.8%) (-257.6%) (-83.1%)

GAC 302.8 m 728.2 m 2601.2 m 168.8 m 325.6 m 822.9 m 43.8 mW
(60 sec) (-3504.8%) (-5176.8%) (-537.2%) (-916.9%) (-1245.4%) (-1882.9%) (+26.9%)

GPS
12 m 12 m 35 m 1.3 m 1.3 m 2 m 268 mW
(-42.9%) (+13.0%) (+91.4%) (+92.2%) (+94.6%) (+95.2%) (-347.4%)

Table 3: Comparison between Dejavu, GPS, and GAC [27] with different duty cycles. Percentages are calculated relative to Dejavu.
∗ Power consumption is for the HTC Nexus One phone.

[2] M. Alzantot and M. Youssef. Uptime: Ubiquitous
pedestrian tracking using mobile phones. In WCNC,
pages 3204–3209. IEEE, 2012.

[3] P. Bahl and V. N. Padmanabhan. Radar: An
in-building rf-based user location and tracking system.
In INFOCOM, volume 2, pages 775–784. IEEE, 2000.

[4] A. W. Bowman and A. Azzalini. Applied smoothing
techniques for data analysis. Oxford Univ. Press, 1997.

[5] Y.-C. Cheng, Y. Chawathe, A. LaMarca, and
J. Krumm. Accuracy characterization for
metropolitan-scale wi-fi localization. In MobiSys,
pages 233–245. ACM, 2005.

[6] W. S. Cleveland and S. J. Devlin. Locally weighted
regression: an approach to regression analysis by local
fitting. Journal of the American Statistical
Association, 83:596–610, 1988.

[7] I. Constandache, R. R. Choudhury, and I. Rhee.
CompAcc: Using mobile phone compasses and
accelerometers for localization. In INFOCOM, 2010.

[8] I. Constandache, S. Gaonkar, M. Sayler, R. R.
Choudhury, and L. Cox. EnLoc: Energy-efficient
localization for mobile phones. In INFOCOM, 2009.

[9] Y. Cui and S. S. Ge. Autonomous vehicle positioning
with gps in urban canyon environments. IEEE Trans.
Robot. Autom., 19:15–25, 2003.

[10] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden,
and H. Balakrishnan. The pothole patrol: using a
mobile sensor network for road surface monitoring. In
MobiSys, pages 29–39. ACM, 2008.

[11] Google’s mylocation.
http://www.google.com/mobile/maps/.

[12] B. Hofmann-Wellenhof, H. Lichtenegger, and
J. Collins. Global positioning system. theory and
practice. Springer, 1, 1993.

[13] M. Ibrahim and M. Youssef. Cellsense: a probabilistic
rssi-based gsm positioning system. In GLOBECOM,
pages 1–5. IEEE, 2010.

[14] M. Ibrahim and M. Youssef. A hidden markov model
for localization using low-end gsm cell phones. In
Communications (ICC), pages 1–5. IEEE, 2011.

[15] M. Ibrahim and M. Youssef. Cellsense: An accurate
energy-efficient gsm positioning system. IEEE T.
Vehicular Technology, 61:286–296, 2012.

[16] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower,

I. Smith, J. Scott, T. Sohn, J. Howard, J. Hughes,
F. Potter, et al. Place lab: Device positioning using
radio beacons in the wild. In Pervasive Computing,
pages 116–133. Springer, 2005.

[17] A. Mednis, G. Strazdins, R. Zviedris, G. Kanonirs,
and L. Selavo. Real time pothole detection using
android smartphones with accelerometers. In DCOSS,
pages 1–6. IEEE, 2011.

[18] P. Mohan, V. N. Padmanabhan, and R. Ramjee.
Nericell: rich monitoring of road and traffic conditions
using mobile smartphones. In SenSys. ACM, 2008.

[19] P. Newson and J. Krumm. Hidden markov map
matching through noise and sparseness. In
SIGSPATIAL, pages 336–343. ACM, 2009.

[20] C. O’Driscoll, G. Lachapelle, and M. E. Tamazin.
Investigation of the benefits of combined gps/glonass
receivers in urban environments. In Proc. on RIN
NAV10 Conf. on Position, Location, Timing:
Everyone, Everything, Everywhere, 2010.

[21] D. W. Scott. Multivariate density estimation: theory,
practice, and visualization, volume 383. Wiley, 2009.

[22] B. W. Silverman. Density estimation for statistics and
data analysis. Chapman & Hall/CRC, 1986.

[23] Skyhook wireless. http://www.skyhookwireless.com/.

[24] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef,
and R. R. Choudhury. No need to war-drive:
Unsupervised indoor localization. In MobiSys, pages
197–210. ACM, 2012.

[25] M. Youssef and A. Agrawala. The Horus WLAN
location determination system. In MobiSys, 2005.

[26] M. Youssef and A. Agrawala. Location-clustering
techniques for wlan location determination systems.
IJCA, pages 278–284, 2006.

[27] M. Youssef, M. A. Yosef, and M. El-Derini. GAC:
energy-efficient hybrid GPS-accelerometer-compass
GSM localization. In GLOBECOM. IEEE, 2010.

[28] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick,
Z. M. Mao, and L. Yang. Accurate online power
estimation and automatic battery behavior based
power model generation for smartphones. In
CODES/ISSS, pages 105–114. ACM, 2010.

	1 Introduction
	2 System Overview
	2.1 Raw Sensor Information
	2.2 Dead-reckoning and Anchor-based Error Resetting
	2.3 Anchors Detection

	3 The Dejavu System
	3.1 Preprocessing
	3.2 Physical Anchors
	3.2.1 Curves and turns
	3.2.2 Tunnels
	3.2.3 Bridges
	3.2.4 Road anomalies

	3.3 Virtual Anchors
	3.3.1 Features selection
	3.3.2 Anomaly detection
	3.3.3 Two stage clustering

	3.4 Computing the Anchor Location
	3.5 Discussion
	3.5.1 Anchors aliasing
	3.5.2 Efficient matching
	3.5.3 Processing location
	3.5.4 Other sensors
	3.5.5 Handling heterogeneity

	4 Evaluation
	4.1 Performance of the Different System Modules
	4.1.1 Physical anchor detection accuracy
	4.1.2 Virtual anchor detection accuracy
	4.1.3 Anchor localization accuracy
	4.1.4 Effect of anchor density on accuracy

	4.2 Comparison with Other Systems
	4.2.1 Localization Error
	4.2.2 Power consumption

	5 Related Work
	6 Conclusion
	7 References

