
0-7803-7016-3/01/$10.00 ©2001 IEEE

Lagrange Relaxation Based Method for the QoS
Routing Problem

Alpár Jüttner, Balázs Szviatovszki, Ildiḱo Mécs, Zsolt Rajḱo
Ericsson Research,

Traffic Analysis and Network Performance Laboratory
Budapest, Hungary

e-mail: {Alpar.Juttner, Balazs.Szviatovszki, Ildiko.Mecs, Zsolt.Rajko}@eth.ericsson.se

Abstract—In this paper a practically efficient QoS routing method is pre-
sented, which provides a solution to the delay constrained least cost routing
problem. The algorithm uses the concept of aggregated costs and provides
an efficient method to find the optimal multiplier based on Lagrange re-
laxation. This method is proven to be polynomial and it is also efficient in
practice. The benefit of this method is that it also gives a lower bound on the
theoretical optimal solution along with the result. The difference between
the lower bound and the cost of the found path is very small proving the
good quality of the result. Moreover, by further relaxing the optimality of
paths, an easy way is provided to control the trade-off between the running
time of the algorithm and the quality of the found paths. We present a com-
prehensive numerical evaluation of the algorithm, by comparing it to a wide
range of QoS routing algorithms proposed in the literature. It is shown that
the performance of the proposed polynomial time algorithm is close to the
optimal solution computed by an exponential algorithm.

Keywords—QoS routing, delay, optimization, Lagrange relaxation

I. INTRODUCTION

Providing network-wide delay guarantee for real-time flows
in the Internet is a challenging task. Thinking of some voice
application there are numerous sources of delay: queuing delay,
propagation delay, codec delay, serialization delay, and other
e.g., shaping/reshaping delays.

Queuing delay depends on the used scheduling algorithms.
One can determine queuing delay by calculating worst-case de-
lay, or by calculating average delay on some statistical means. In
the literature several articles concentrate on guaranteeing worst-
case delay and bandwidth for a simple flow [1], [2], [3], [4] uti-
lizing the concept of the so-called ‘network calculus’ and ‘ser-
vice curves’ [5]. All of these papers concentrate on providing
delay bounds when flows are treated separately. Grouping flows
that belong to guaranteed delay service, may result in lower re-
source requirement than handling all the flows separately. In
[6] it was shown that grouping two flows with the same source-
destination pair may result in some gain of allocated resource.

It was shown in [9] that by using an enhanced routing infor-
mation distribution component [8], [10] and assuming a rate-
based service model [11], queuing delay can be determined for
each hop when the burst size, maximum packet size and mini-
mum guarantied service rate reserved for that hop is known.

Propagation delay can be considered as a constant attribute
of the link depending on the distance of the source and desti-
nation nodes. A paper [7] investigating the end-to-end effect of
Internet path selection found that there is a substantial degree
of inefficiency in path selection. The study showed, that con-
gestion and propagation delay both play significant roles in the
observed inefficiencies of Internet paths and neither one is the

single dominant factor.
Knowing the computed per-hop worst-case queuing delay to-

gether with the propagation delay we can assign a single additive
delay metric for each link. In our approach, unlike in [9] we do
not take into account the inaccuracy of (e.g. OSPF) state infor-
mation, but we consider a network optimization criterion (that
was neglected in the mentioned study). For example such an
optimization criterion can be to have good resource utilization
which can be achieved by minimizing hop-count. Another ex-
ample could be to minimize an additive monetary cost [12], or
some price depending on the delay guaranty requested [13].

It has been proven in [14] that a routing problem is NP-
complete, if the number of additive QoS parameters that should
be minimized are more then or equal to two. In the literature
most of the algorithms does not try to solve this complex prob-
lem, instead they define simpler problems. In this paper we con-
centrate on a simplified problem which is to find a path that is
minimal for a cost, and the delay of it remains under a given
bound. We formulate this problem —referred to as the Delay
Constrained Least Cost path problem (DCUR)— in Section I-
A.

In Section II we survey previous work in the field. We
first present a method which provides the optimal paths for the
DCLC problem, but with exponential running time. Then we
group the rest of the QoS routing algorithms in two groups: (1)
heuristics combining paths calculated on different metrics, and
(2) heuristics calculating a single metric from multiple require-
ments.

As the main result of the paper, in Section III a new algorithm
called Lagrange Relaxation based Aggregated Cost (LARAC) is
proposed, that belongs to the second category. The LARAC al-
gorithm provides a polynomial heuristic solution for the DCLC
problem. Instead of using heuristics to manipulate the weights
of the different metrics in the aggregated cost function, our
method uses the Lagrange relaxation method to find the opti-
mal multiplier. Besides describing the details of the LARAC
algorithm we show that it has the following properties:

• It always gives back a path that satisfies the delay constraint
if such a path exists.
• Its running time is proven to be polynomial. Moreover, in
practical cases the running time of the algorithm competes with
the most elementary heuristics.
• Though there is no general theoretical guarantee on the op-
timality of the found path’s cost, the algorithm gives a lower

859 IEEE INFOCOM 2001



0-7803-7016-3/01/$10.00 ©2001 IEEE

bound of the optimal cost, that is it gives individual guarantees
for each solution.
• The lower bound and the cost of the found path are very close
in practical cases, proving the high quality of the result.
• It can also be used for multiple QoS requirements.

An extension to the basic algorithm is also proposed in Sec-
tion III-E.2, which can be used to control the trade-off between
the optimality of the result and the running time of the algorithm.

In Section IV we show that the algorithm gives good simula-
tion result compared to previously developed algorithms. With
the proposed extension, the running time of our algorithm is
very good, and the path costs are close to the optimal one.

A. Problem Formulation

Assume that a communication network can be modeled as a
directed, connected graph G = (V, E), where V represents the
set of nodes, and E represents the set of directed links. Let
n = |V | and m = |E|, the number of nodes and the number
of edges, respectively. (Usually we have duplex links, so in the
graph the existence of a link e = (u, v) from node u to node v
implies the existence of a link e′ = (v, u) for any u, v ∈ V .)

Each link e ∈ E is characterized by the following values:
Delay d(e), which is a constant value related to the propagation
and queuing delay of the link/hop, Cost c(e), which is e.g., a
simple hop count, a monetary cost or some measure of link’s
capacity.

The definition of the Delay Constrained Least Cost path prob-
lem (referred hereafter simply as DCLC) is the following [15]:

Given a directed, connected graph G(V, E), a non-negative
cost c(e) and a non-negative delay d(e) for each link e ∈ E, a
source node s, a destination node t, and a positive delay con-
straint ∆delay . The constrained minimization problem is:

min
p∈P ′(s,t)

∑

e∈p

c(e), (1)

where P ′(s, t) is the set of path from s to t for which the
end-to-end delay is bounded by ∆delay . Therefore P ′(s, t) ⊆
P (s, t). Namely a p ∈ P (s, t) is in P ′(s, t) if and only if

∑

e∈p

d(e) ≤ ∆delay . (2)

The DCLC problem is NP-hard [14], however it is worth
mentioning that an important special case is solvable in polyno-
mial time if all link costs or all link delays are equal, or have a
few constant different values [21]. Although a number of heuris-
tic algorithms have been proposed to solve the DCLC problem,
the appropriate choice of routing algorithms is still an open is-
sue.

II. PREVIOUS WORK

In this section we give a survey on the different routing al-
gorithms proposed in the literature. Up to our best knowledge
there is no widely accepted algorithm that can give the optimal
solution of the DCLC QoS routing problem in polynomial time.

Widyono [16] proposed a routing method that gives the opti-
mal path —having the lowest possible cost without violating the
delay constraint—, unfortunately with an exponential running

time. The Constrained Bellman-Ford (CBF) routing algorithm
performs a breadth-first search, discovering paths of monotoni-
cally increasing delay while recording and updating lowest cost
path to each node it visits. It stops, when the highest constraint is
exceeded, or there is no more possibility of improving the paths.
Since this extension uses delay instead of hopcount, which is a
continuous metric, the routing table which contains entries for
all possible delays can be very large, even of unrealizable size.
As we mentioned the CBF algorithm has an exponential running
time. Widyono have not analyzed it conclusively, but stated that
despite of its exponential nature, the performance of the algo-
rithm was reasonable in practice.

As a further development of the CBF algorithm, using a kind
of scaling technique, the authors of [31], [32], [33] and [34] gave
fully polynomial time approximation schemes for the DCLC
problem, namely they proved that for any ε > 0 there exists
a polynomial time algorithm that is able to find a path satisfying
the delay constraint with cost no greater than a factor of 1 + ε
from the optimum. The running time of the best known approx-
imation scheme is O(nm log n log log n + nm

ε ) [34] . Unfortu-
nately, in practical cases the running time of these methods for
sufficiently small ε will be worse than even of the CBF algo-
rithm, which makes these results rather theoretical.

All other algorithms try to use some kind of heuristics or ap-
proximation. A very simple method proposed by W. C. Lee [17]
does not give optimal paths, but provides a simple heuristic so-
lution to the DCLC problem. The Fallback routing algorithm
assumes that there are ranked metrics in the network. First, the
routing algorithm calculates the shortest path for the first met-
ric (i.e. cost), and then checks whether it can guarantee all the
other QoS requirements. If the path failed, the algorithm tries to
find another one for the next metric, until an appropriate path is
found, or the routing fails for all the metrics. This algorithm is
very simple, fast and always gives an appropriate solution if it
exists, but there is no guarantee of finding the optimal route and
we do not know anything about the quality of the found path.

The algorithm proposed by Pornavalai [18] improves the pre-
vious idea by combining paths calculated on the different met-
rics, by first calculating the paths based on the metrics from the
source node to the others and from all the nodes to the desti-
nation, and then trying all the possible combinations of them.
There are two more algorithms improving the idea of Fallback.
Ishida [19] proposed a distributed algorithm in which the nodes
always choose the least cost path until it fulfills the delay re-
quirements and from that point they choose the path with the
least delay. The Delay Constrained Unicast Routing (DCUR)
algorithm proposed by Salama [15] is similar to it, but it can
choose between the least cost and least delay paths indepen-
dently from the choice of the previous node. These three al-
gorithms have higher but still reasonable running time, and it is
more likely that they find a solution near the optimal than it was
in case of the Fallback algorithm, but neither these algorithms
have guarantees for the optimality of the path.

Cheng and Nahrstedt [20] give an algorithm to find a path that
meets two requirements in polynomial time. The algorithm re-
duces the original problem to a simpler one by modifying the
cost function, based on which the problem can be solved using
an extended shortest path algorithm. The shortcoming of this

860 IEEE INFOCOM 2001



0-7803-7016-3/01/$10.00 ©2001 IEEE

method is that the algorithm has to use high granularity in ap-
proximating the metrics, so it can be very costly in both time
and space, and it can not guarantee that the simpler problem has
a solution if the original problem has.

The last group of algorithms [21], [22], [24], [25] is based on
calculating a simple metric from the multiple requirements. By
doing so, we can use a simple shortest-path algorithm based on
a single cost aggregated as a combination of weighted QoS pa-
rameters. The main drawback of this solution is that the result is
quite sensitive to the selected aggregating weights, and there is
no clear guideline on how the weights should be chosen. To han-
dle the problem of determining the weights for the aggregated
cost solution, several routing algorithms has been proposed. For
example the algorithm proposed in [26] tries to find an appro-
priate path based on a single cost of weighted link metrics. If it
fails, it tries to find another path by iterative changing the values
of weights so as to get more possible paths, until an appropri-
ate path that guarantees QoSs can be found. Another problem
with this solution is that if the path is correct for the aggregated
cost, it does not mean that it is correct for all of the user’s QoS
requirements. In other words, information is lost in the aggre-
gation process.

Wang and Crowcroft [12] say that single (mixed) metric ap-
proach can not be sufficient for QoS routing. It can at best be an
indicator in path selection but does not provide enough informa-
tion for making reliable quantitative estimation of whether the
path meets the requirements or not. For example, he proposes
a mixed metric from delay, bandwidth and loss probability. A
path with a large value of B(p)

D(p)·L(p) is likely to be a better choice
in terms of bandwidth, delay and loss probability. However, it
is not sure that a path, which minimizes the above expression, is
suitable for any of the constraints (bandwidth, delay or loss).

On the contrary we state that this problem can be solved, and
there are algorithms based on aggregated costs, which can find
paths that meet the QoS constraints. In the next section we
present the LARAC algorithm which uses the Lagrange relax-
ation method to find the optimal weighting of the aggregated
cost function to achieve this.

III. PROPOSED ALGORITHM

A. Lagrange Relaxation based Aggregated Cost

The original DCLC problem is to minimize the cost c of the
path, while keep the delay d under a given constraint ∆delay . In
a formal description, we are looking for

min{c(p) : p ∈ P (s, t) and d(p) ≤ ∆delay}, (3)

where P (s, t) is the set of paths from the source node s to the
destination node t.

Unfortunately, as we mentioned this problem has been proven
to be NP-hard, so we cannot hope an algorithm that can find the
theoretical optimum and runs in polynomial time.

Our heuristic is based on the Lagrange relaxation.
Lagrange Relaxation is a common technique for calculating

lower bounds, and finding good solutions for this problem. First
Held and Karp raised with this technique for the Traveling Sales-
man Problem in [27], [28].

We propose to use this technique to solve the DCLC problem.
The presented LARAC - Lagrange Relaxation based Aggre-
gated Costalgorithm is based on the heuristic of minimizing
cλ := c + λ · d modified cost function. For a given (fixed) λ
we can easily calculate the minimal path (pλ). If λ = 0 and
d(pλ) ≤ ∆delay we found an optimal solution for the original
problem as well. If d(pλ) > ∆delay we must increase λ, to in-
crease the dominance of delay in the modified cost function. So
we increase λ while the optimal solution of cλ suits the delay
requirements.

In this section we show how to find the value of λ that gives
the best result. Moreover, the algorithm will give an upper
bound on the badness of the solution as a byproduct, based on
the following Claim.

Claim 1: Let

L(λ) := min{cλ(p) : p ∈ P (s, t)} − λ∆delay . (4)

Then L(λ) is a lower bound to problem (3) for any λ ≥ 0.
Proof. Let p∗ denote an optimal solution of (3). Then

L(λ) = min{cλ(p) : p ∈ P (s, t)} − λ∆delay

≤ cλ(p∗) − λ∆delay

= c(p∗) + λ(d(p∗) − ∆delay) ≤ c(p∗)

proves the claim. �

To obtain the best lower bound we need to maximize the the
function L(λ), that is we are looking for the value

L∗ := max
λ≥0

L(λ), (5)

and the maximizing λ∗. Now, some properties of the function
L(λ) are given. The simple proofs are left to the reader.

Claim 2: L is a concave piecewise linear function, namely
the minimum of the linear functions c(p) + λ(d(p) − ∆delay)
for all p ∈ P (s, t). �

Claim 3: For any λ ≥ 0 and cλ-minimal path pλ, d(pλ) is a
supgradient of L in the point λ. �

Claim 4: Whenever λ < λ∗, then d(pλ) ≥ ∆delay and if
λ > λ∗, then d(pλ) ≤ ∆delay for each cλ-minimal path pλ. �

Claim 5: A value λ maximizes the function L(λ) if and only
if there are paths pc and pd which are both cλ∗ -minimal and for
which d(pc) ≥ ∆delay and d(pd) ≤ ∆delay . (pc and pd can be
the same, in this case d(pd) = d(pc) = ∆delay .) �

Our algorithm will give these paths along with λ∗.
Claim 6: Let 0 ≤ λ1 < λ2, and pλ1 , pλ2 ∈ P (s, t) λ1-

minimal and λ2-minimal paths. Then c(pλ1) ≤ c(pλ2) and
d(pλ1) ≥ d(pλ2). �

These two latter Claims together gives that the λ∗ maximizing
the function L(λ) gives the best modified cost function, that is
λ∗ is the smallest value for which there exists a cλ∗ -minimal
path pd which satisfies the delay constraint.

Summing up, we neglect the constraining conditions (this is
the relaxation), and build them into the object function. The
solutions feasible to the original problem can certainly suit the
relaxation conditions as well, so we can get a lower bound of
the original problem. If the path found is not feasible for the
constraining conditions, we increase the dominance of it in the
modified cost function, enforcing the solution to approach to the

861 IEEE INFOCOM 2001



0-7803-7016-3/01/$10.00 ©2001 IEEE

optimal solution. Moreover, decrease the difference between the
obtained lower bound and the optimum of the original problem
as well. This is the base of the Lagrange-relaxation. For a more
detailed description, the reader is referred to [23].

With the help of Lagrange relaxation we have an algorithm
which can find the optimal λ for a given source destination pair,
thus among the aggregated cost routing methods this algorithm
gives the best solution that can be obtained. Moreover it gives an
estimation for the optimal solution, although we have no guar-
antee of finding the optimal solution, we always get a bound
for the solution, which tells that at most how far is it from the
optimal solution.

In the following section we survey the LARAC algorithm,
and in Section III-E.1 and III-E.2 we mention two possibilities
of improving the algorithm.

B. The description of the algorithm

In this section LARAC algorithm is described:
1. In the first step the algorithm sets λ = 0. It calculates shortest
path on cλ modified cost function with Dijkstra algorithm. It
means that the first shortest path found by the algorithm is the
shortest on the original cost c. If the path found meets the delay
requirement ∆delay , this is the optimal path, and the algorithm
stops.
2. Otherwise the algorithm stores the path as the best path that
does not satisfy ∆delay (this path is denoted by pc in the follow-
ing), and checks whether an appropriate solution exists or not:
Calculates shortest path on delay d. If the obtained path suits
the delay requirement a proper solution exists, so the algorithm
stores this path as the best appropriate path found till now (de-
noted by pd). Otherwise there is no suitable path from s to t that
can fulfill the delay requirement, so the algorithm stops.
In the further steps we obtain the optimal λ, through updating
pc and pd repeatedly with another paths.
3. Let’s see the current paths pc and pd. If for a certain λ, both
pc and pd are cλ-minimal, then using the Claim 5, this λ maxi-

procedureLARAC(s, t, c, d, ∆delay)
pc := Dijkstra(s, t, c)
if d(pc) ≤ ∆delay then return pc

pd := Dijkstra(s, t, d)
if d(pd) > ∆delay

then return “There is no solution”
repeat

λ := c(pc)−c(pd)
d(pd)−d(pc)

r := Dijkstra(s, t, cλ)
if cλ(r) = cλ(pc) then return pd

else ifd(r) ≤ ∆delay then pd := r
else pc := r

end repeat
end procedure,

where Dijkstra(s, t, c) returns a c-minimal
path between the nodes s and t.

Fig. 1. The LARAC algorithm

mizes L(λ). But in this case cλ(pc) = cλ(pd), from which we
get that the only possible λ is

λ :=
c(pc) − c(pd)
d(pd) − d(pc)

. (6)

So, we set it as the new candidate for the optimal solution. Then
we find a cλ-minimal path r. If cλ(r) = cλ(pc) then pc and
pd are also cλ-minimal, so we are done by setting λ∗ = λ and
resulting pd. If cλ(r) < cλ(pc) then we replace either pc or pd

with r according whether it fails or fulfills the delay constraint,
and repeats this step.

e

C. Running time of the algorithm

Let p1
c , p

2
c , p

3
c , · · · and p1

d, p
2
d, p

3
d, · · · denote the sequences of

paths generated by the algorithm. It can be seen that

d(p1
c) > d(p2

c) > d(p3
c) > · · · > ∆delay (7)

and
d(p1

d) < d(p2
c) < d(p3

c) < · · · ≤ ∆delay , (8)

so, because there are only finite number of different path, the
algorithm finds the optimal λ in finite number of steps. More-
over the following stronger result can be proved using similar
technique to the proof of strongly polynomiality of the so-called
Newton-method [30].

Theorem 1: The LARAC algorithm terminates after
O(m log3 m) iteration, so the running time of the algorithm is
O(m2 log4 m). �

We omit the long and technical proof.

D. The optimality of the path

As we stated it above (in Section III-A) the optimality of λ
does not mean the optimality of the path found as well. In fact
there is no guarantee of finding the optimal path, or some bound
which is higher than the ratio of the obtained, and the optimal
path. There are two cases, when the algorithm can not find the
optimal solution.

In the first case, the algorithm could find the optimal solution,
but it is not sure, that it finds it. In Figure 2 we can find an
example of such a network, and the belonging cost functions of
the paths. In this network there are several path with the same cλ

at the optimal λ, therefore the algorithm can not decide which
path is the optimal on the base of cλ.

Here the optimality of the path found depends on which path
is chosen by the Dijkstra algorithm if more then one path have
a cost of equal length. The first idea of constraining Dijkstra to
choose the path with the lowest cost among the path with equal
cλ, does not results in a proper path. As it can be seen in the
figure, it will always find the path with the lowest cost, which
violates the delay constraint. In real networks this case is not
likely to occur, so it is not worthy to study the solution of it
profoundly. The other case is more likely, but as we will see it
later it neither cause a great anxiety. Considering the network,
and the Lagrange function in Figure 3 we can see that it can
easily occur, that the modified cost (cλ) of the optimal path is
higher than a suboptimal path at the optimal λ.

862 IEEE INFOCOM 2001



0-7803-7016-3/01/$10.00 ©2001 IEEE

Moreover, cλ of the optimal path is higher than L(λ) for any
λ, so this path can not be found by this algorithm by no means.
In fact this problem can not be handled with any of the algo-
rithms based on aggregated cost.

A possibility of improving the performance of the algorithm
in this case is to increase the influence of cost in the modified
cost function. If the cost is raised to the second power in cλ, the
effect of cost becomes more strong, therefore the chance of the
optimal path to have the smallest cλ at the optimal λ increases.
Since the delay remains linear cλ −∆delay remains linear func-
tion in λ for all the paths, it does not violate the convergence of

D

C

E

A F

(1
,1)

(1,2)

(1,3)
(1,4)

(4,1)
(3,1)

(2,1)

(1
,1)

B

1

2

3

4

5

A-B-F

A-C-F

A-D-F

A-E-F

Paths:

21

Fig. 2. A network (a), where there are several paths with the same cλ at λopt,
and the Lagrange function of it (b)

D

A

C

(2
,1)

B

(1,4)

(4,3)

(4
,3

)

(1,8)

(1
6,2

)

λ

Paths:

16

12

8

4

A-D

A-C-D

A-B-C-D

A-B-DA-C-B-D

optimal path

optimal

1 2 3 4

Fig. 3. A network (a), where the cλ of the optimal path is higher than a subop-
timal path at λopt, and the Lagrange function of it (b)

the algorithm. In Figure 4 we can see the effect of raising cost
to the second power.

2

4

6

8

1 2 3 4 5 6 7 8

P1

Paths:

P2

P3

2

4

6

8

1 2 3 4 5 6 7 8

P1

P2

P3

Paths:

Fig. 4. The Lagrange function of a network with linear cost (a), and with square
cost (b)

Notice, that this modifying of cλ does not influence the slope
of the lines, i.e., the dependence of cλ − ∆delay on λ. It just
shifts the lines farther off each other. Hence, the path that has a
lower cost will be placed to a lower position in comparison with
another path with a higher cost.

Certainly this trial does not solve the problem, since it is easy
to find other networks which behave in the same way with this
square cost as the network in the previous example. The only
benefit of it is that for some of the networks it gives better solu-
tion than the algorithm with a linear cost function. (Other expo-
nents can be applied as well, but the increasing of the exponent
may results in very high values of costs. It usually can not be
decided that it is worth working with higher costs, or it does not
give much better solution in a given network.)

E. Improvements to LARAC algorithm

In this section we mention two important possibilities of im-
proving LARAC.

E.1 Storing former results

In reality router computes paths for a lot of destinations, in-
stead of doing it for a single one. The original LARAC algo-
rithm can be improved by utilizing this fact, by reusing results
of previous calculations.

So, whenever we call Dijkstra algorithm with a certain λ we
store its whole result, that is, we store the cλ-minimal paths to
all destinations. These paths form a tree, so we need to store
only m edges. Moreover we store the c-cost and the d-cost of
these path.

The new method is very simple. The only difference is that
when we are looking for a path to a new destination, we are look-
ing for the largest previously calculated λ1 for which d(pλ1) ≥

863 IEEE INFOCOM 2001



0-7803-7016-3/01/$10.00 ©2001 IEEE

∆delay and the smallest λ2 for which d(pλ2) ≤ ∆delay , and we
initialize pc and pd with these paths instead of c- and d-minimal
ones.

E.2 Improved stop condition

We optimize the algorithm to gain faster running time, by giv-
ing up the requirements on the minimality of the found path’s
cost. When we compute a path for a given source-destination
pair, we calculate with different λ values. As the iteration num-
ber increases, so decreases the difference between the subse-
quent λ values, and the difference between the cost of the paths
also decreases.

So, let p0
c , p

1
c , p

2
c , · · · , pj

c be the series of paths (say from
source s to destination t) that do not satisfy the delay constraint,
and let be p0

d, p
1
d, p

2
d, · · · , pk

d the series of paths that satisfy the
delay constraint.

Our aim is to stop the algorithm before it finds the optimal
solution, but only when can assure that the result is not far from
the optimum.

The algorithm gives pk
d as the final solution, so we are in-

terested in the difference between cost of the tags of the pd-
series and the last tag pj

d. Let us examine the running algorithm
in a certain intermediate iteration and let suppose that the cur-
rent paths at the end of this iteration are pa

c and pb
d. Because

c(pa
c ) < c(pk

d), we get that

c(pb
d) − c(pk

d) < c(pb
d) − c(pa

c ). (9)

So, if the difference between c(pb
d) and c(pa

c ) is small enough,
then the difference between c(pb

d) and c(pk
d) will be possibly

negligible, in which case there is no need to continue the running
of the iteration.

We define an upper bound named Maximal Difference (MD),
which shows in percentage that how much difference is tolerated
between the cost of the original solution (that would be given by
the original algorithm) and the cost of the new solution’s path
(that is given by the improved algorithm). Thus, if

c(pb
d) ≤ (1 + MD) ∗ c(pa

c ) (10)

stands at the end of an iteration, then the algorithm can stop,
since no further significant improvement on the resulting path’s
cost can be earned. Our tolerance toward the minimality of cost
is represented in the value of MD.

IV. NUMERICAL RESULTS

Since the complexity of the routing model precludes closed
form analytical expressions, we used simulations to evaluate the
performance of the LARAC algorithm and other QoS routing al-
gorithms proposed in the literature. This section is structured as
follows: we survey the implemented algorithms and measure-
ments in Section IV-A, then in Section IV-B we give a descrip-
tion of the simulation environment. Finally in Section IV-C we
introduce our simulation experiments.

A. Implemented Algorithms and Measurements

We investigated the performance of the LARAC algorithm and
compared it to the most promising three algorithms selected
from the ones surveyed in Section II. The CBF algorithm has

been selected, because it gives the optimal solution, which can
be a useful measure for the other algorithms. The Fallback al-
gorithm has been selected for its simplicity; DCUR, because it
was the most promising among the algorithms that compose the
constrained path from other paths obtained by simple shortest
path algorithms. Since LARAC can give the best solution that
can be obtained with aggregated costs, we did not implement
any other algorithms of this category.

We compared the behavior of the implemented algorithms
with the help of the following measures:
• Average Number of Unreachable Nodes: It can happen that
with a given delay constrain ∆delay there is no path in the net-
work to a certain destination. We need this measure to know
whether all the algorithms can find paths to the same number of
destination nodes.
• Average Cost: this attribute measures the average cost of the
paths from a source node to all the reachable destination nodes.
• Average Delay: It is the average delay of the paths from a
source node to all the reachable destination nodes.
• Average Number of Steps: This attribute measures the running
time of the algorithms. Since both Dijkstra and CBF works with
a heap, the number of step represents the events when the algo-
rithm changes the contents of the heap. It will not give exact re-
sults, since the calculation of the number of steps is different for
CBF and the other algorithms that use Dijkstra, however com-
plexity measurements based on these calculations still provide
us valuable feedback. For those algorithms that execute Dijk-
stra several times during its calculations, the complexity mea-
sure gives comparable results.
• Cost Inefficiency: this measure can be calculated from the op-
timal cost measure of the CBF algorithm [25], [15]. It can be
defined as:

δA :=
C(pA) − C(pCBF )

C(pCBF )
(11)

where A stands for the algorithm for which the cost inefficiency
is calculated. We will use δA and maxδA to characterize com-
prehensively the results of an algorithms provided for different
delay constraints.

B. Simulation Environment

For the simulation we built 100 random networks with 40
nodes and an average node degree of 4 (reflecting real network
values [15]). The results of the measurements have been aver-
aged. The topology of the networks was generated by a Random
Graph Generator program [29]. The cost value on links varies
from 1 to 15 based on uniform distribution. The propagation
delay on links is selected from three ranges to resemble delay
characteristics of a nationwide network e.g. in the US. The first
range (1-5 ms) represents short local links, the second range (5-
8) represents longer local links, while the third range (20-30 ms)
represents continental links. The ratio of long local links was
configured to be 20 percent, while the ratio of continental con-
nections in networks was configured to be 5 percent.

In the simulations we changed the delay constraint ∆delay

and investigated its effect on the found paths of different algo-
rithms. Since the average number of unreachable nodes is the
same for all algorithms, the other measures of the routing algo-
rithms are comparable.

864 IEEE INFOCOM 2001



0-7803-7016-3/01/$10.00 ©2001 IEEE

C. Experiments

In Section IV-C.1 we first investigate the basic LARAC algo-
rithms without the proposed improvements described in details
in Section III-E, then Experiments of the improved LARAC al-
gorithm are presented in Section IV-C.2.

C.1 Comparison of the four algorithms

As it was mentioned before an important result of the simula-
tion is that the average number of unreachable nodes is the same
for all algorithms. This means that all algorithms managed to
find a path that satisfies the delay constraint. However, in min-
imizing the other additive metric (i.e., cost) the algorithms pro-
vide different results. In Figure 5 we can see the average cost of
the paths found by the algorithms. The LARAC algorithm found
almost the same paths as CBF, while DCUR found paths with
higher cost, and the worst cost was achieved by Fallback. The
result of Fallback meets our expectations, however we could not
tell before that DCUR is worse than LARAC, although it could
be seen that DCUR can easily find paths with higher cost than
the optimal. Finally, LARAC’s lower bound for the optimal path
cost is very close to the results of CBF.

12

14

16

18

20

22

24

26

10 20 30 40 50 60

A
ve

ra
ge

 C
os

t

Delay constraint (ms)

Larac
CBF

FALLBACK

DCUR
Larac lower bound

Fig. 5. Average cost

The maximum worst case cost max δA, and the average worst
case cost δA of the algorithms compared to the cost of the opti-
mal CBF are the following (Table I):

TABLE I

MAXIMUM AND AVERAGE COST INEFFICIENCY

Algorithm max δA δA

LARAC 102.9% 101.3%
DCUR 110.9% 104.7%
Fallback 117.4% 108.7%
LARAC lower bound 99.27% 99.7%

It can be seen in Figure 5 that at the first section of the curves
(∆delay < 15) the found paths have very low cost, and after the
cost of the path increases with the delay bound. The explana-
tion of this phenomenon is that it is impossible to find path for
all source destination pairs with a small ∆delay , and the found
paths are short, thus the costs of them are also small. As the de-
lay bound increases the algorithms find more and more (longer)

paths, therefore the average cost of the paths increases. After
the point where a path can be found for all source destination
pairs, the average cost of the paths will decrease with the delay
bound, because the algorithms are able to find the paths with
lower costs and higher delay bounds.

This effect can be noticed on the delay curves (Figure 6) as
well. We expected CBF to have the highest delay, then LARAC,
DCUR and Fallback. The result we got is almost meets our
expectations, but for surprise DCUR has the highest delay.

2

4

6

8

10

12

14

16

18

10 20 30 40 50 60

A
ve

ra
ge

 D
el

ay

Delay constraint (ms)

Larac
CBF

FALLBACK
DCUR

Fig. 6. Average delay

In Figure 7 the average number of steps of the algorithms are
compared. As we can see all algorithms have a very character-
istic curve for the number of steps.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

10 20 30 40 50 60

R
ou

tin
g 

st
ep

Delay constraint (ms)

Larac
CBF

FALLBACK
DCUR

Fig. 7. Average number of step

For the small delay constraints LARAC has an increasing run-
ning time, since as it can find paths to more and more destina-
tions, the number of Dijkstra executions increases. As it reaches
the delay constraint that allows paths to all the nodes in the net-
work, the number of steps starts to decrease since minimum cost
paths computed first can more likely satisfy the looser delay
bounds, thus eliminating the execution of the second Dijkstra
algorithm to get the minimum delay path. This is the reason
why the average number of steps for the LARAC algorithm ap-
proximates the number of step of a single Dijkstra algorithm for
high delay values.

865 IEEE INFOCOM 2001



0-7803-7016-3/01/$10.00 ©2001 IEEE

Fallback has a decreasing characteristic as well, the difference
is that it is linear in the first section, and equals to the running
time of 2 Dijkstra algorithms. After this first section, the num-
ber of steps decreases to the number of steps of 1 Dijkstra, for
similar reasons as it was explained for LARAC.

We implemented the DCUR algorithm in a centralized man-
ner for the simulations. For this reason the running time of it
would be huge (2n times the running time of a Dijkstra algo-
rithm), so in the figure an estimation is plotted for a distributed
implementation. We used the execution time of 2 Dijkstra algo-
rithms for the running time estimation of the distributed DCUR.

CBF has a totally different characteristic. Since the algorithm
exit condition depends only on the delay constraint, it increases
with ∆delay . The last horizontal section shows, that the algo-
rithm stopped because all the paths from the heap has been al-
ready used.

C.2 Improvements to LARAC algorithm

We investigated both optimization proposal’s effect on the
performance of the LARAC algorithm. The first optimization
(storing former results) aims at improving the running time of
the basic LARAC algorithm. Based on our simulations we can
say that the gain on the routing step is quite significant. Under
the critical value of delay bound (which is 15 ms) up to 39%
gain is earned.

The second optimization (improved stop condition) affects
not only the running time but also the cost of the found paths,
since it modifies the exit condition of the algorithm.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

10 20 30 40 50 60

R
ou

tin
g 

st
ep

Delay constraint (ms)

Larac
Larac with Storing

Larac MD 20%
Larac MD 40%

Larac MD 80%
Larac MD 100%

FALLBACK

Fig. 8. Average number of step

Figure 8 and 9 show the average routing step of the algorithms
and average cost of the computed paths. As we can see on figure
8, the running time greatly decreases as we increase the value of
Maximal Difference (or shortly MD). Four different results are
presented, one for each of the different MD values. Table II
summarizes the improvement of the algorithms’ running time
with the help of average iteration number. This provides us the
average number of times the Dijkstra algorithm was executed
with a given algorithm. As we can notice, the original LARAC
algorithm had an average iteration number of 7.94, while the
improved one with e.g., MD 40% this value decreased to 4.34.

These values are very impressive, but the gain on routing steps
is only one side of the coin. We have to examine the average

12

14

16

18

20

22

24

26

10 20 30 40 50 60

A
ve

ra
ge

 C
os

t

Delay constraint (ms)

Larac
Larac MD 20%
Larac MD 40%
Larac MD 80%

Larac MD 100%
Larac lower bound

FALLBACK

Fig. 9. Average cost

cost of the found paths as well. In Figure 10 and in Table IV-
C.2 the increase in cost is presented. When the MD value 40%
was used, the average cost inefficiency δA increased to 102.4%.
Similarly at the MD value 80%, δA equals to 104.6%. The gain
on running time compared to the loss on the optimality of path
costs seems to be worthy. Moreover, our algorithm provides a
good way of controlling the trade-off between optimality of the
path, and running time of the algorithm.

19

20

21

22

23

24

25

26

10 15 20 25 30 35 40

A
ve

ra
ge

 C
os

t

Delay constraint (ms)

Larac
Larac MD 20%
Larac MD 40%
Larac MD 80%

Larac MD 100%

CBF
FALLBACK

DCUR
Larac lower bound

Fig. 10. Average cost

C.3 A special network for CBF

In the 40 node random networks CBF had an acceptable run-
ning time, although for high delay constraints it has higher run-
ning time than the other algorithms. We found that the execution

TABLE II

SUMMARY OF AVERAGE ITERATION NUMBER AND OPTIMALITY OF COSTS

Algorithm Average max δA δA
Iteration Number

LARAC 7.94 102.9% 101.3%
MD 20% 5.80 104.7% 101.5%
MD 40% 4.34 105.8% 102.4%
MD 80% 2.92 108.4% 104.6%
MD 100% 2.57 110.2% 105.4%

866 IEEE INFOCOM 2001



0-7803-7016-3/01/$10.00 ©2001 IEEE

time of CBF increases faster than the other algorithms as the
number of nodes in the network increases, therefore for large
networks it may have an undesirable high execution time. In
Figure 11 a network type is shown, where CBF has a worse ex-
ecution time in some of the nodes than the other algorithms. In

2   ,019 2   ,019 2   ,019 2   ,019

... 19

0117

1 2 3 18 20

1,218 1,2 1,2 1,2

Fig. 11. A special network for CBF

this network each node i is connected to node i + 1 with two
edges. The cost and delay of the links are marked on the arrows.
The ”upper” links have high cost, and low delay, in such a way
that the cost of one upper link is always higher than the sum of
the costs of the lower links. This arrangement increase the run-
ning time of CBF, since the delay will be different for all paths
that can be obtained.

It can be easily seen that on these kind of chain networks the
running time of CBF is exponential in number m of the links.
By adding a node and two more links, the running time of the
algorithm doubles.

V. CONCLUSIONS AND FUTURE WORK

We proposed a new algorithm called LARAC for the well
known Delay Constrained Least Cost problem, which is the
most common QoS routing problem when delay sensitive traffic
should be considered. We evaluated the performance of differ-
ent QoS routing algorithms by simulation. We compared the
running time of the algorithms and the optimality of the paths
they found in terms of cost and delay.

The original LARAC algorithm was the best among the poly-
nomial heuristic algorithms proposed so far in the literature. Its
cost are the closest to the optimal cost computed by the CBF
algorithm, moreover it gives an estimate of the optimality of
the found paths. We also proposed two improvements for the
LARAC algorithm. The first one decreased the running time
significantly without effecting the cost of the paths, while the
second improvement further decreased the running time but with
a controllable loss of optimality. The improved LARAC algo-
rithm running time is only slightly greater than that of CBF, and
due to its stability in all kind of networks, it can be a reasonable
algorithm to solve the DCLC problem.

Also we concluded from the simulations, that the DCUR
algorithm finds routes with both higher cost and delay than
LARAC. The Fallback algorithm has a very good execution
time, and it is easy to implement, but the cost of it is the worst
among the implemented algorithms. CBF gives the optimal cost
solution and it has a surprisingly good execution time in most of
the cases, but in certain situations the running time of it could
be undesirably high.

A possible further improvement to the LARAC algorithm can
be its extension to handle two given constraints while minimiz-
ing a third one. An example for the two constraints can be delay
and hop-number. The aggregated cost function then should con-
tain three tag (cost, delay, hop-number). Our expectations are

that the complexity of the algorithm does not increase in a great
manner during the extension, while this is not true in the case of
CBF algorithm.

ACKNOWLEDGMENTS

The authors would like to acknowledge the suggestions of
Áron Szentesi.

REFERENCES

[1] L. Georgiadis, R. Guerin, V. Peris and R. Rajan, ‘Efficient Support of Delay
and Rate Guarantees in an Internet’, IBM T.J. Watson Research Center

[2] A.K. Parekh and R.G. Gallager, ‘A Generalized Processor Sharing Ap-
proach to Flow Control in Integrated Services Networks - The Multiple
Node Case’, IEEE/ACM Transactions on Networking, 1(3):344-357, June
1993.

[3] A.K. Parekh and R.G. Gallager, ‘A Generalized Processor Sharing Ap-
proach to Flow Control in Integrated Services Networks - The Multiple
Node Case’, IEEE/ACM Transactions on Networking, 2(2):137-150, April
1994.

[4] R. Szabó, P. Barta, J. Bı́ró, F. Németh, C-G. Perntz, ‘Non Rate-Proportional
Weighting of Generalized Processor Sharing Schedulers’ GLOBECOM’99,
Dec. 1999.

[5] R. L. Cruz, ‘A Calculus for Network Delay’, IEEE Transactions on Infor-
mation Theory, vol.37, no. 1, pp.114-141, January 1991.

[6] S. Rampal, R. Guerin, ‘Flow Grouping For Reducing reservation Require-
ments for Guaranteed Delay Service’, July 1997

[7] Stefan Savage, Andy Collins, Eric Hoffman, Thomas Anderson, ‘The End-
to-End Effects of Internet Path Selection’ ACM SIGCOMM ’99 pp.289-299
September 3, 1999.

[8] Roch A. Guerin, et al., ‘QoS Routing mechanisms and OSPF Extensions’,
Internet Engineering Task Force, Internet Draft, December 1998, (Work in
Progress).

[9] Guerin Roch A.; Orda Ariel, ‘QoS routing in networks with inaccu-
rate information: theory and algorithms’ IEEE/ACM-Transactions-on-
Networking. vol.7, no.3; p.350-64; June 1999.

[10] G. Apostolopoulos, R. Guérin and S. Kamat, ‘Implementation and Perfor-
mance measurements of QoS routing extensions to OSPF’ in Proceedings
of INFOCOM’1999, New York, March 1999.

[11] S. Shenker, C. Partridge, R. Guérin, ‘Specification of guaranteed quality
of service’ Request For Comments (Proposed Standard) RFC2212, Internet
Engineering Task Force, September 1997.

[12] Zheng Wang and Jon Crowcroft, ‘Bandwidth-Delay based routing algo-
rithms’, IEEE GlobeCom’95, Singapore, November 1995.

[13] Funda Ergun, Rakesh Sinha, Lisa Zhang, ‘QoS Routing with Performance-
Dependent Costs’ IEEE INFOCOM’2000 pp., March, 2000.

[14] M. S. Garey, D.S. Johnson, ‘Computers and Intractability: Guide to the
Theory of NP-Completeness’, W. H. Freeman, New York, 1979.

[15] Hussein F. Salama, Douglas S. Reeves and Yannis Viniotis, ‘A Dis-
tributed Algorithm for Delay-Constrained Unicast Routing’, IEEE Info-
com’97, Kobe, Japan, April 1997.

[16] R. Widyono, ‘The design and evaluation of routing algorithms for real-
time channels’, Technical Report TR-94-024, University of California at
Berkeley, June 1994.

[17] W.C.Lee, et al. ‘Multi-Criteria Routing subject to Resource and Perfor-
mance Constraints’, ATM Forum 94-0280, March 1994.

[18] C. Pornavalai, G. Chakraborty and N. Shiratori, ‘Routing with multiple
QoS requirements for supporting multimedia applications’, Journal of High
Speed Networks, 1998.

[19] Kenji Ishida and Kitsutaro Amano, ‘A Delay-Constrained Least-Cost Path
Routing Protocol and the Synthesis Method’, IEEE 1998.

[20] Shigang Cheng and Klara Nahrstedt, ‘On finding multi-constrained paths’
ICC’98, Atlanta, Georgia, 1998.

[21] Jeffrey Jaffe, ‘Algorithms for finding path with multiple constraints’, Net-
works, vol. 14, pp.95-116, 1984.

[22] David Blokh and George Gutin, ‘An approximation algorithm for combi-
natorial optimization problems with two parameters’, 1995.

[23] Ravindra K. Ahuja, Tomas L. Magnanti and James B. Orlin, ‘Network
Flows’ PRENTICE HALL, Upper Saddle River, New Jersey 07458, 1993.

[24] H. de Neve, P. van Mieghem, ‘A multiple quality of service routing algo-
rithm for PNNI’, IEEE ATM’98 Workshop, pp.306-314, Fairfax, Virginia,
May 1998.

[25] Liang Guo and Ibrahim Matta, ‘Search Space Reduction in QoS Routing’
Technical Report NU-CCS-98-09, October 1998.

867 IEEE INFOCOM 2001



0-7803-7016-3/01/$10.00 ©2001 IEEE

[26] Atsushi Iwata, et al. ‘ATM Routing Algorithms with Multiple QoS Require-
ments for Multimedia Internetworking’, IEICE Trans. Commun., vol.E79-
B, pp.999-1007, August 1996

[27] M. Held and R. Karp, ‘The traveling salesman problem and minimum
spanning trees’, Operations Research 18, pp.1138-1162, 1970.

[28] M. Held and R. Karp, ‘The traveling salesman problem and minimum
spanning trees, Part II.’, Mathematical Programming 6, pp.62-88, 1971.

[29] Balázs Gábor Józsa and Dániel Orincsay, ‘Random Graph Generator (for
telecommunication networks)’, Technical Report, April 1999.

[30] T. Radzik, ‘Fractional combinatorial optimization’ , In Handbook of Com-
binatorial Optimization, editors DingZhu Du and Panos Pardalos, vol. 1,
Kluwer Academic Publishers, December 1998.

[31] R. Hassin, ‘Approximation schemes for the restricted shortest path prob-
lem’, Mathematics of Operations Research, 17(1):36–42, Feb 1992.

[32] D.H. Lorenz and A. Orda, ‘QoS routing in networks with uncertain param-
eters’, IEEE/ACM Transactions on Networking, 6(6):768–778, Dec 1998.

[33] Danny Raz and Yuval Shavitt, ‘Optimal Partition of QoS requirements with
Discrete Cost Functions’, INFOCOM 2000

[34] Dean H. Lorenz, Ariel Orda, Danny Raz, and Yuval Shavitt, ‘Efficient QoS
Partition and Routing of Unicast and Multicast’, IWQoS 2000, June 2000.

868 IEEE INFOCOM 2001


